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Abstract: Laser-scanning confocal hyperspectral microscopy is a powerful technique to identify
the different sample constituents and their spatial distribution in three-dimensional (3D). However,
it suffers from low imaging speed because of the mechanical scanning methods. To overcome this
challenge, we propose a snapshot hyperspectral confocal microscopy imaging system (SHCMS).
It combined coded illumination microscopy based on a digital micromirror device (DMD) with
a snapshot hyperspectral confocal neural network (SHCNet) to realize single-shot confocal
hyperspectral imaging. With SHCMS, high-contrast 160-bands confocal hyperspectral images
of potato tuber autofluorescence can be collected by only single-shot, which is almost 5 times
improvement in the number of spectral channels than previously reported methods. Moreover,
our approach can efficiently record hyperspectral volumetric imaging due to the optical sectioning
capability. This fast high-resolution hyperspectral imaging method may pave the way for real-time
highly multiplexed biological imaging.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The spectral information of dyes or autofluorescence in cells is important for quantifying and
analyzing the components within the sample [1–8]. Hyperspectral confocal microscopy is
an advanced microscopy technique that combines the principles of confocal microscopy and
hyperspectral imaging [9,10]. Compared to wide-field microscopy, hyperspectral confocal
microscopy not only enables the detection of spectral information but also possesses enhanced
optical sectioning capability. The hyperspectral laser-scanning confocal microscopy system
typically consists of a confocal microscope equipped with a diffraction grating or prism. The
fluorescence of the sample expands into a three-dimensional hyperspectral cube after passing
through the dispersive element, which cannot be directly accessed by a two-dimensional image
sensor. Therefore, the traditional method achieves the acquisition of hyperspectral images by
scanning. However, the imaging speed of laser-scanning confocal microscopy is slow since it
adopts the point scanning manner [11–13]. Acquisition speed can be increased by optimizing the
illumination scheme like simultaneously scanning multiple points or lines [14,15]. Although
line-scanning confocal microscopy has improved the temporal resolution to some extent, but it
still belongs to the scanning imaging mode of using time to exchange spectral information and
lead to a big data size to be stored, transmitted, and processed [16].
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Code Aperture Snapshot Spectral Imaging (CASSI) based on compressive sensing (CS)
[17,18] is a novel spectroscopic imaging technique that captures a compressive measurement in a
snapshot and recovers the 3D hyperspectral cube by the reconstruction algorithm [19–24]. This
spectral imaging approach, which utilizes coded aperture modulation instead of scanning, has
great potential for applications in real-time scenes. However, the quality of CASSI reconstruction
is poor when facing complex data cube reconstruction with hundreds of channels, because
of the substantial compressive ratio. To overcome this obstacle, researchers have tried to
reduce the compressive ratio, capturing multiple snapshots using different coded apertures or
by utilizing non-diffractive images as references for reconstruction [25–27]. However, both
methods either introduce extra exposures or increase the cost and complexity of the system. On
the other hand, deep learning algorithms use convolutional neural networks to learn the mapping
relations of hyperspectral datasets directly from coded compressive images, which can achieve
good reconstruction results. Due to GPU acceleration, deep learning algorithms can achieve
millisecond reconstruction time performance. However, the majority learning-based methods
rely on an assumption of strong prior similarity between the training and testing data. The current
deep learning-based CASSI algorithms typically utilize synthetic datasets to train networks
[28–31]. In fact, the emission spectrum and central wavelength of samples are always different
from the synthesized dataset, which may result in the degradation of the model and unreliable
outputs. Another effective deep learning algorithm is the self-supervised network based on the
image prior [32,33], but it requires an additional camera to acquire the reference image.

In this study, we realize snapshot hyperspectral confocal microscopic imaging by applying
the CASSI to the confocal imaging system for the first time, to our knowledge. Our system
employs a DMD-based microscope for paired hyperspectral compressive data acquisition and
utilizes an interpretable deep unfolding neural network (SHCNet) for hyperspectral confocal
reconstruction. The snapshot hyperspectral confocal microscopic imaging system (SHCMS) can
generate different structures of illumination based on the programmable characteristics of the
DMD, thus providing pairs of snapshot compressive measurement data and hyperspectral confocal
images for SHCNet training. This guarantees that our trained network is more applicable to the
spectral response of our hardware system, which makes the reconstruction more credible. The
SHCNet is based on the generative adversarial network (GAN) framework that achieves a good
balance of local detail enhancement and artifact suppression [34]. We carry out experiments on
the autofluorescence of potato tuber to demonstrate the performance of our system. Our proposed
method can reconstruct 160-bands hyperspectral confocal images, which achieves almost 5 times
improvement in the number of spectral channels than previous reported methods. In summary,
our system not only realizes high-resolution CASSI reconstruction at a high compressive ratio
but also has significant potential for applications in real-time hyperspectral confocal microscopy
imaging.

2. Method

2.1. Principle of SHCMS

An illustration of our experimental setup is shown in Fig. 1. Our prototype system can recover 160
spectral channels confocal images in the visible bandwidth from 409–677 nm using only a single-
shot compressive measurement. The system consists of a DMD-based hyperspectral confocal
microscopy and a deep learning-based reconstruction algorithm. DMD-based hyperspectral
confocal microscopy can take advantage of the programmable characteristics of DMD to switch
between snapshot hyperspectral imaging and line-scanning hyperspectral confocal imaging.
Therefore, the SHCMS can capture snapshot compressive measurement data and hyperspectral
confocal image data in pairs for network training. SHCNet is trained on the pairwise data
collected by the SHCMS system rather than the synthetic data, enabling the model to consider the
influence of noise distribution in real scenarios and learn the spectral response of SHCMS. This
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provides more reliable reconstructions for microscopic hyperspectral imaging. Experimentally,
we verify the snapshot hyperspectral confocal imaging performance of SHCMS with the potato
tuber autofluorescence.

Fig. 1. Workflow of the SHCMS. Our system consists of (a) and (b). (a) Schematic of
snapshot hyperspectral confocal microscopy. DMD as a coding mask in conjunction with a
prism to perform the spatial and spectral modulations for compressive measurement. (b) The
overall structure of the SHCNet. The network is capable of recovering 160 spectral channel
confocal images. (c) Schematic of confocal imaging. Multi-line patterns are utilized to
implement the pinhole function to obtain the hyperspectral confocal images, which act as
the ground truth for SHCNet training. L, lens; DB, dichroic beamsplitter; TL, tube lens.

2.2. Hardware prototype implementation

Figure 1(a) shows the schematic illustration of our designed SHCMS. The power tunable laser,
operating at 488 nm, is used as the light source. The laser beam is reflected by a dichroic beam
splitter (DB) to the DMD (V7001 DLP7000&DLPC410), which modulates the laser with a
random mask and then illuminates the sample through a tube lens and objective (Nikon 20X/0.75).
The sample is selectively excited and emits fluorescence at the focal plane of the objective
following the DMD modulation pattern. Subsequently, the fluorescence returns to the DMD
along the excitation path and is dispersed by the prism (Shanghai Optics, custom-made) through
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the DB. Finally, the encoded compressed fluorescence is received by the sCMOS (ORCA-Flash
4.0LT+Hamamatsu) through the 4-f system and used as an input to the SHCNet. On the other
hand, when we load multiple line scan patterns on the DMD, the system becomes a parallelized
line-scanning hyperspectral confocal microscopy, as shown in Fig. 1(c). The sample is selectively
excited according to the multi-line pattern displayed by the DMD. The DMD only reflects the
in-focus fluorescence in the white regions of the modulation patterns in Fig. 1 (c). Here, the
DMD plays as a confocal pinhole because it is in the back focal plane of the objective lens. Thus,
we can acquire the ground truth of hyperspectral confocal images for network training via this
imaging system.

The calibration of the system consists of two main aspects, one is the calibration of the tilt
angle between the DMD and sCMOS and the other is the spectral calibration. In consideration of
the inherent reflective properties of the DMD, it becomes imperative to position the sCMOS
orthogonally at a 24° angle relative to the optical axis. However, such positioning results in the
generation of non-uniform imagery, predominantly attributable to the variances in the optical
pathways induced by the DMD. To compensate this optical path difference reflected by the
different DMD micromirrors, the sCMOS must be further tilted in the opposite direction by a
Scheimpflug angle [35,36]. The detailed calibration method can refer to Ref. [37]. Next, we can
estimate the DMD multiline scanning interval to be 160 columns based on the range of spectral
shifts when the halogen lamp illuminates the DMD single column, as shown in Fig. 2(a). The
scan interval at 160 columns means that there is no spectral crosstalk between adjacent scanning.
Through spectral calibration experiments of a mercury lamp and a halogen lamp filtered by 460
and 655 nm band-pass filters (Chroma, ET460/36 m, and AT655/30 m), we found a nonlinear
relationship between the wavelength λ and the number of sCMOS columns. The wavelength
versus pixel shift calibration curve is shown in Fig. 2(b), and we used a two-order polynomial
fitting model. Through this dispersion relation, we can map the spectral wavelengths to the
pixel shift in the sCMOS. We also provide spatial and spectral resolution characterization in
Supplement 1 Fig. S1.

Fig. 2. Spectral calibration. (a) The spectrally dispersed image of a mercury lamp and a
halogen lamp filtered by 460 and 655 nm band-pass filters caused by the deflection of the
single column micromirrors. (b) The fitting result of the dispersive relation.

2.3. Reconstruction network

SHCNet is designed following the framework of GAN. It consists of a generator based on deep
unfolding [38,39] and a discriminator based on U-Net, as shown in Fig. 1(b). The generator
produces reconstructed results, while the discriminator assesses the authenticity of the output.

https://doi.org/10.6084/m9.figshare.25427821
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In generator, Deep unfolding network unrolls the iterative optimization-based reconstruction
procedure into a neural network, as shown in Fig. 3. Each stage has the task of solving the
iterative equations, which makes the neural network interpretable. Specifically, for a 128 × 287
input image, we sliced it through a sliding window with step size of 1, resulting in a total of 160
images of size 128× 128, and finally acquired an initial data block of dimensions 128× 128× 160.
Subsequently, we compute results through a series of stages, where each stage comprises a
gradient descent module and a proximal mapping module, corresponding to the two iterative
steps in the Iterative Shrinkage-Thresholding Algorithm (ISTA) [40]. As for the discriminator,
we employ a U-Net structure to discern the reconstructed results, which is advantageous for
reconstructing details [34].

Fig. 3. The architecture of SHCNet. (a) The structure of an individual stage within iterations
consists of a gradient descent module and a proximal mapping module. (b) Extracts matrix
self-attention from the encoding matrix used for compression. The “S” function here refers to
the sigmoid function. (c) Utilizes a U-Net-based discriminator to evaluate the reconstructed
results.

Forward Model of CASSI. The snapshot hyperspectral confocal microscopy system is based
on the coded aperture snapshot spectral imaging technique. The hyperspectral image can be
seen as a three-dimensional data block X ∈ RH×W×C, where H and W denote spatial dimensions
and C represents the spectral dimension. The encoding process is performed using a mask
M ∈ {0, 1}H×W , and the modulated hyperspectral image is expressed as follows:

X′(x, y, λi) = M(x, y) ⊙ X(x, y, λi), (1)

where x, y denote spatial positions, ⊙ is the Hadamard (element-wise) product, and λi represents
the i-th wavelength channel. By employing a prism, the encoded spectral channels are dispersed
into different spatial positions and then superimposed. The displacement distance is wavelength-
dependent, denoted as d(λi). Consequently, the relationship is defined as:

Y(x, y) =
C∑︂

i=1
X′(x + d(λi), y, λi). (2)
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By combining Eqs. (1) and (2), we obtain the complete imaging process of CASSI as follows:

Y(x, y) =
C∑︂

i=1
M(x + d(λi), y) ⊙ X(x + d(λi), y, λi) , (3)

using vector x to represent X, vector y to represent Y, Φ as the imaging matrix, and n as noise, the
expression can be written as follows:

y = Φx + n (4)

Architecture of the SHCNet. The overall structure of SHCNet adopts the framework of
GAN, we use an optimization-inspired deep unfolding network for image reconstruction, serving
as the generator of the GAN network, while the discriminator is employed to distinguish between
real and fake outputs.

The generator part employs a deep unfolding network. Drawing inspiration from the ISTA, we
view image reconstruction as the following optimization problem:

x = argmin
x

1
2
∥y − Φx∥2

2 + vψ(x), (5)

where the first term denotes the data fidelity term, constraining the reconstructed content, and the
second term is the regularization term. The parameter ν serves as the regularization coefficient
to ensure generalization capability.

The traditional ISTA algorithm solves the data fidelity and regularization terms separately
using gradient descent and proximal mapping as follows:

r(k) = x(k−1) − ρΦT (Φx(k−1) − y),

x(k) = argmin
x

1
2

∥︁∥︁∥︁x − r(k)
∥︁∥︁∥︁2

2
+ vψ(x). (6)

Here, ρ represents the iteration step size, r(k) denotes the solution to the data fidelity term,
while x(k) represents the solution to the regularization term obtained through proximal mapping.
Based on these two steps, we designed a deep unfolding network composed of a gradient descent
module based on mask self-attention and a proximal mapping module.

In gradients descent module, The ISTA-based deep unfolding networks currently employ
fixed Φ and ΦT in Eq. (6), limiting the flexibility of the network. To address this problem,
another deep unfolding network called HerosNet has been proposed [41]. It replaces them with
convolutions, but does not merge the spatial information from the mask. We aim to enhance
network reconstruction performance by introducing spatial information from the mask while
increasing the flexibility of the network’s reconstruction capabilities. Consequently, we adopted
a mask self-attention mechanism. The mask attention is computed with the mask self-attention
module, denoted as MA. The specific structure is illustrated in Fig. 3(b). Firstly, following the
principles of CASSI imaging, we transformed the mask into an equivalent Mr as follow:

Mr(x, y) =
C∑︂

i=1
M(x + d(λi), y), (7)

here, Eq. (7) represents the shift-sum operation in Fig. 3(b). Subsequently following the mapping
through a 1× 1 convolution, Mr undergoes deep convolution and is transformed into depth feature
information using the sigmoid function. This depth feature information is then multiplied with
the mapped information to obtain the mask self-attention information Ms. Finally, we use the
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shift-back operation to transform the Ms back into a 3D data cube to obtain the MA. The specific
operation of shift-back is represented by Eq. (8):

MA(x, y, λi) =

C∑︂
i=1

MS(x − d(λi), y). (8)

We demonstrate the effectiveness of mask attention by ablation experiments, please refer
to the Supplement 1 Fig. S2. Meanwhile, for achieving adaptive adjustment of the iterative
step size, a dynamic step calculation module is introduced during gradient descent. It relies on
the previous iteration’s result x(k−1), and through residual operations and sigmoid activation, it
achieves adaptive adjustment of the iteration step.

Given that the structure in deep unfolding networks will be repeated multiple times, overly
complex structures can lead to excessive parameters and prolonged inference time. Therefore, we
adopt simple modules to address the problem of feature domain solving as much as possible.
The residual block, composed of convolutions and activation functions, is a commonly used and
simple module for image feature processing. Additionally, to address the problem of information
loss caused by the limited data transmission between different stages, we introduced a cross-stage
feature sharing module. Representing the inter-stage features within each layer as d(k) and their
collection as D(k), we obtained a deep-unfolding network composed of the following two iterative
steps:

r(k) = x(k−1) − Λ ⊙ Conv2(MAT ⊙

(︂
Conv1

(︂
MA ⊙ Conv0(x(k−1)

)︂
) − y)

)︂
,

Λ = Sigmoid
(︂
ResBlock

(︂
x(k−1)

)︂)︂
,

x(k), d(k) = ResBlocks
(︂
r(k), D(k−1)

)︂
,

D(k) = D.append
(︂
d(k)

)︂
.

(9)

Here, MAT shares the same structure with MA and is also trainable. The inclusion of “T”
indicates its role in replacing various positions of mask attention within the model. Within
this framework, the residual block applies a convolutional layer connecting a ReLU activation
function, which connects another convolutional layer, followed by addition with the initial input.

For the design of loss function, L1 loss has typically been the primary method employed
in the previous multispectral compressive sensing tasks. However, L1 loss outputs poorer in
details in our experiments, leading to distortion and other artifacts. To address this limitation, we
introduced a U-net-based discriminator to directly evaluate the reliability of the reconstruction.
We demonstrate the effectiveness of GAN loss by ablation experiments, please refer to the
Supplement 1 Fig. S3. By combining this discriminator evaluation with L1 loss, we derived a
hybrid loss:

L = L1 + γLgan, (10)
using γ as the blending weight to integrate the two loss components.

Training details. In our implementation, we set the image size N = H × W × C =

128 × 128 × 160, where each measurement size is H × (W + C − 1). For SHCNet, we
default the number of stages to 8 and the feature channels to C = 128. For each sample, we
collected 1600 data pairs, randomly selecting 160 pairs to construct the test datasets and collecting
an additional 1440 pairs to form the training datasets. The batch size was set to B = 2, and
training was conducted using the ADAM optimizer with a momentum of 0.9 and weight decay of
0.999. Learning the sampling pattern and SHCNet required approximately one week in total on
an NVIDIA RTX 3090 GPU for 300 iterations. The learning rate was initialized to 1 × 10−4

and decayed to 1 × 10−6 at the end. The Mean Square Error (MSE), Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) were used as quantitative metrics for all
evaluations.

https://doi.org/10.6084/m9.figshare.25427821
https://doi.org/10.6084/m9.figshare.25427821
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3. Results

In this section, we verify the hyperspectral and confocal imaging capabilities of the SHCMS.
Specifically, we evaluate the hyperspectral reconstruction capability by plotting spectral recon-
struction curves and validate the confocal imaging capability by comparing the resolution of
the reconstructed image with wide-field image. In addition, we performed a comparison of
SHCNet with other reconstruction algorithms. We use quantitative evaluation metrics including
PSNR and SSIM to compare the image quality of the reconstructed hyperspectral images with
the ground truth.

3.1. Hyperspectral confocal experimental results

To verify the performance of the SHCMS, we perform experimental imaging of potato tuber
autofluorescence. We employ SHCMS to acquire single-shot compressive measurements of
fluorescence as input to the SHCNet and reconstruct hyperspectral confocal images with 160
wavelength channels. Figure 4(a) shows the spectral reconstituted results of potato tubers in three
channels (513.4 nm, 559.5 nm, 599.6 nm) out of 160 wavelength channels and its merge image,

Fig. 4. The autofluorescence of potato tuber. (a) Reconstruction results in three channels
(513.4 nm, 559.5 nm, 599.6 nm) out of 160 spectral channels and its merge image with
SHCNet. (b) Two points marked by ‘A’ and ‘B’ in the merge image are selected to plot the
spectral curves. (c) The compressive measurement and wide-field image corresponding to
the same scene. GT, ground truth; WF, wide-field.
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Fig. 5. Spatial 3D hyperspectral imaging of potato tubers. (a) Reconstruction results and
GT in single channel (513.4 nm) with SHCNet. (b) Reconstruction merge results and GT in
three channels (513.4 nm, 559.5 nm, 599.6 nm) out of 160 spectral channels with SHCNet
(c) Wide-field image corresponding to the same scene. (d) Confocal and wide-field profile
of the intensity value with respect to the z position, which are calculated from the intensity
image of 1 µm fluorescent spheres.

which are very close to the ground truth in visualization. The size of all reconstructed images
shown in this study is 128× 128. More wavelength channels of potato tuber autofluorescence
hyperspectral images can be found on Fig. S4. We also provide MSE and SSIM indices for the
spectral data cube, which are both indicative of the high quality of our network reconstruction, as
shown in Fig. S5.

Figure 4(b) shows the spectral differences of two selected point (A and B) within 160 channels
between network outputs and ground truth. Two solid lines (network output) almost coincide
with the dashed line (ground truth), which means that the spectral distribution of the SHCNet
reconstruction is almost identical to that of the ground truth. Meanwhile, the difference between
the spectral distribution curves of points A and B can indicate the different components in potato
tubers. In contrast, it is difficult to select a suitable filter to observe the autofluorescence because
of the broad spectral response [42]. To validate our spectral reconstruction capability in all
channels, we performed hyperspectral reconstruction of Hematoxylin and Eosin (H&E) stained
pathology slide under halogen illumination, the details are shown in Fig. S6.

Figure 4(c) shows the compressive measurements and wide-field images acquired by the
system. The compressive measurement image is captured at the sCMOS exposure time of 20 ms
with a size of 128× 287. Here, the wide-field images are obtained by the sCMOS with the DMD
displaying an all-“on” pattern and the prism is removed. It can be seen that the reconstructed
confocal image has higher spatial resolution compared to the wide-field image.
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Fig. 6. Performance comparison among different reconstruction algorithms. (a) Recon-
struction results in two channels (513.4 nm and 559.5 nm) with SHCNet, HerosNet, and
GAP-TV. (b) PSNR and SSIM values of 100-130 wavelength channel.

3.2. 3D imaging of potato tubers

To verify the confocal imaging capability of SHCMS, we performed spatial 3D imaging of
potato tubers. We capture 15 z-slices according to 5 µm step size in the z-direction. The moving
mechanism is realized by a motorized translation stages (Thorlabs, model number: MT1/M-Z9).
Figure 5(a) shows the triple-view maximum intensity projection (MIP) of the single-channel
(513.4 nm) hyperspectral image of potato tubers. We can observe that it has a higher resolution
compared to the wide-field images (Fig. 5(c)). Meanwhile, the merged hyperspectral image of the
three channels (513.4 nm, 559.5 nm, 599.6 nm) has equally high resolution, as shown in Fig. 5(b).

In addition, to quantitatively analyze confocal capability, we take 1 µm fluorescent spheres
as samples and measure their intensity degradation with the out-of-focus position. We acquire
a series of line-scan confocal and wide-field images obtained with the sample stage moving
along the z direction from −12 to +12 µm. When the depth of defocus increases, the intensity
of the fluorescent spheres gradually decreases. The degradation rate of intensity can be used
as a measure to evaluate the effectiveness of eliminating the “out-of-focus” light. When the
degradation rate of intensity is large, it means that the image is less affected by out-of-focus light.
Therefore, SHCMS has a higher axial resolution compared to the wide-field image as seen in
Fig. 5(d).
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3.3. Performance comparison among different reconstruction algorithms

We compare our SHCNet with two hyperspectral reconstruction methods, including HerosNet
and GAP-TV [43]. HerosNet adopts a similar deep unfolding networks framework to ours and
has shown commendable performance. GAP-TV belongs to the optimization iterative algorithm.
All methods are implemented based on their official source codes and evaluated with the same
parameters.

Figure 6(a) shows hyperspectral confocal reconstruction of different algorithms in two channels
(513.4 nm and 559.5 nm) out of 160 wavelength channels. The reconstructed images of different
reconstruction algorithms were scaled uniformly. It can be observed that our network outputs the
reconstruction having finer details and sharper image edges than other methods. HerosNet is able
to reconstructs the morphological features but blurs in detail presentation. This verifies that the
U-Net discriminator module we introduced is favorable for reconstructing details. Meanwhile,
the GAP-TV cannot reconstruct any information because the compressive rate is too substantial
for reconstructing 160 channels. To quantitatively compare the reconstruction performance, we
use the PSNR and SSIM as the evaluation indicator. We calculated PSNR and SSIM values for
the 100-130 channel, where autofluorescence of potato tubers is concentrated. SHCNet achieves
the highest PSNR and SSIM value, as shown in Fig. 6(b). It can be concluded that SHCNet
presents the best in spectral results.

4. Discussion

Deep learning algorithms are data-driven and usually require pre-training process. The quality
of the training datasets determines the performance of the network. However, deep learning
algorithms are often trained using simulated synthetic datasets to deal with a lack of paired
data. The lack of training data in experiment limits the effectiveness and generalization of the
algorithms in most deep-learning application scenarios. The advantage of SHCMS is that it can
acquire paired datasets of hyperspectral confocal images and snapshot compressive measurements
in realistic scenarios by switching the pattern of the DMD. This means that SHCMS can
continuously generate large, diverse, and paired training datasets to enhance the robustness and
generalization performance of SHCNet.

We experimented to compare the reconstruction of SHCNet trained with realistic datasets
(R.D.) and simulated datasets (S.D.). We simulated the physical process of snapshot compressed
sampling on a computer. The 160-bands hyperspectral confocal images are multiplied by the
mask and then stacked along the column direction to generate simulated snapshot compressive
measurements. We trained the network with simulated data and tested the network with realistic
data. A compressive measurement captured by SHCMS is the input to the network for testing,
which never appears during the training of the network. Figure 7 shows the reconstruction of
the network trained with R.D. and S.D., respectively. The single channel reconstruction of the
network trained with S.D. only shows the contours of the sample and the entire image is blurred,
as shown in Fig. 7(a). On the contrary, the reconstruction of the network trained with R.D. is the
closest to the ground truth. Quantitively, we provide the PSNR and SSIM indices of these two
networks in channels 100 to 130 (Spectral interval of sample fluorescence), as shown in Fig. 7(b).
Both PSNR and SSIM scores of R.D. trained network are much higher than S.D. trained network.

The reason for such a result is that there is a difference between the simulated compressive
measurements and the real collected compressive measurements. Many factors in the hardware
including point spread function (PSF), spectral calibration and noise etc. may cause this difference.
Furthermore, comprehensively accounting for all variables within the simulation process poses
significant challenges, particularly due to the substantial cost associated with calibrating the
PSF for each wavelength. Nevertheless, our system facilitates the acquisition of optical system
properties through the training process with the realistic paired dataset. This attribute stands as a
distinctive advantage of our approach, underscoring the novelty and efficacy of our methodology.
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Fig. 7. Performance comparison of SHCNet trained with R.D. and simulated datasets S.D.
(a) Reconstruction results in single channels (513.4 nm). (b) PSNR and SSIM values of
spectral channels 100 to 130. R.D.: realistic datasets, S.D.: simulated datasets.

5. Conclusion

In this paper, we develop a novel hyperspectral confocal microscopy along with a deep learning
reconstruction algorithm, achieving snapshot hyperspectral confocal microscopic imaging. Based
on the programmable characteristics of DMD, we can acquire the paired datasets. These data are
used as training datasets for the SHCNet to improve its robustness to realistic noise and learn
the spectral response of SHCMS. The performance of our system may be continually enhanced
as the dataset increases. Moreover, we propose a deep unfolding network structure based on
the GAN network framework. The U-Net structured discriminators of our network that show
advantages in detail reconstruction. Finally, we achieve snapshot hyperspectral confocal images
of potato tuber autofluorescence, yielding high-contrast 160-bands hyperspectral fluorescence
images. We hope the proposed method will benefit future works in compressive hyperspectral
image reconstruction and confocal microscopy.
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