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Compressive confocal microscopy
imaging at the single-photon level with
ultra-low sampling ratios
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Laser-scanning confocal microscopy serves as a critical instrument for microscopic research in
biology.However, it suffers from low imaging speedandhighphototoxicity. Herewebuild anovel deep
compressive confocal microscope, which employs a digital micromirror device as a coding mask for
single-pixel imaging and a pinhole for confocal microscopic imaging respectively. Combined with a
deep learning reconstruction algorithm, our system is able to achieve high-quality confocal
microscopic imaging with low phototoxicity. Our imaging experiments with fluorescent microspheres
demonstrate its capability of achieving single-pixel confocal imaging with a sampling ratio of only
approximately 0.03% in specific sparse scenarios. Moreover, the deep compressive confocal
microscope allows single-pixel imaging at the single-photon level, thus reducing the excitation light
power requirement for confocal imaging and suppressing the phototoxicity. We believe that our
system has great potential for long-duration and high-speed microscopic imaging of living cells.

Fluorescencemicroscopy is a pivotal tool formonitoring cell physiology and
studying various biological problems1. A major issue with fluorescence
microscopy is the interference of out-of-focus light, which results in the
blurring of details and reduction of contrast2,3. This problem is commonly
resolved by optical sectioning techniques, which eliminate the out-of-focus
light from the in-focus imaging scene4–6. Laser-scanning confocal micro-
scopy is the most widely used observation instrument for fluorescence
imaging7,8. However, the imaging speed of laser-scanning confocal micro-
scopy is slow since it adopts the point-by-point imaging method and
requires a higher-power laser to enhance the signal-to-noise ratio, which
causes bleaching of fluorescent markers and photodamage to the sample9.
To solve these problems, researchers have proposed light sheet
microscopy10,11 and spinning disk confocal microscopy12,13. Nevertheless,
light sheet microscopy requires special preparation and fixation processes.
Spinning disk confocal microscopy is limited in its flexibility and suffers
from fluorescence crosstalk between pinholes. Another more flexible con-
focal microscope is the programmable array microscope (PAM)14,15, which
uses a digital micromirror device (DMD) as a pinhole for multi-point
parallel scanning and has programmable properties. However, the illumi-
nation beam of the PAMneeds to be extended to cover the entire surface of
the DMD, thus reducing the excitation efficiency. Hence, it requires

extending themeasurement time or using a higher-power laser illumination
source. Moreover, all of the light sheet microscopy, spinning disk confocal
microscopy and PAM require highly sensitive detector arrays, such as the
complementary metal-oxide-emitter semiconductor (sCMOS) or the
electron-multiplying charge-coupled device. Compared with single-pixel
detectors, these detector arrays have a narrow spectral response range, a low
temporal resolution, and a high deployment cost.

Single-pixel imaging (SPI)16,17 based on compressive sensing18–20 is an
ideal imaging method to replace the detector array imaging in some sce-
narios due to its characteristics such as high-throughput measurement,
under-sampling, and higher time resolution. Hence, SPI has found
numerous applications in compressive radar21, X-ray imaging22–24, terahertz
imaging25–27, infrared imaging28 and biomicroscopic imaging29–32. However,
SPI still has the problem of low imaging speed, which results from the
limited refresh rate of the spatial light modulator and multiple single-pixel
sampling. To overcome this obstacle, researchers tried to replace the spatial
light modulators with faster modulation schemes, such as a matrix of light-
emitting diodes33 or a high-speed rotating cyclic Hadamard mask34. How-
ever, these methods cannot flexibly change either the light source or the
modulationmode.Others exploited the information related to the dynamic
scenewith a staticmask to reconstruct a series of time-varying images of the

1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. 2School of Electronic and Computer Engineering, Peking
University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China. 3School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen,Guangdong518055,China. 4Center forQuantumTechnologyResearch, School of Physics, Beijing Institute of Technology, Beijing 100081,
China. 5These authors contributed equally: Shuai Liu, Bin Chen. e-mail: zhangjian.sz@pku.edu.cn; ybzhang08@hit.edu.cn

Communications Engineering |            (2024) 3:88 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00236-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00236-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00236-x&domain=pdf
http://orcid.org/0000-0001-7414-7193
http://orcid.org/0000-0001-7414-7193
http://orcid.org/0000-0001-7414-7193
http://orcid.org/0000-0001-7414-7193
http://orcid.org/0000-0001-7414-7193
http://orcid.org/0000-0001-5486-3125
http://orcid.org/0000-0001-5486-3125
http://orcid.org/0000-0001-5486-3125
http://orcid.org/0000-0001-5486-3125
http://orcid.org/0000-0001-5486-3125
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
mailto:zhangjian.sz@pku.edu.cn
mailto:ybzhang08@hit.edu.cn


scene31,35. Although this approach improves the imaging speed, it requires
high-speedmovement of the samples or a repetitive dynamic scene. On the
other hand, deep learning algorithms can reduce the required measure-
ments for reconstruction36 and can be applied to any kind of SPI system.
However, the current deep learning-based SPI typically utilizes simulated or
unpaired datasets to train the network37,38, which may result in unreliable
reconstructed images in the actual experimental setup. In summary, the low
imaging speed and unsatisfactory imaging quality are currently the main
limitations hindering the development and practical applications of SPI.

In this study, we present a deep compressive confocal microscope
(DCCM) in conjunction with a deep learning reconstruction algorithm
(DCCM-Net) to achieve confocalmicroscopic imaging at the single-photon
level with ultra-low sampling ratios. The DCCM-Net is a novel and pow-
erful deep unrolling reconstruction algorithm under the framework of the
interpretable proximal gradient descent (PGD) optimizationmodel39,40. The
DCCM can provide single-pixel compressed data and confocal images in
pairs forDCCM-Net training. TheDCCM-Net trained by real sampled data
is able to achieve high-quality confocal microscopic imaging with low
phototoxicity. To further improve the imaging speed, we introduce an
innovative high-speed zoom imaging mode, comprised of a neighborhood
merging compressed sampling and a neighborhood unmerging recon-
struction. Under the high-speed zoom imaging mode, the DCCM allows
confocal imagingof thefluorescentmicrosphere at a sampling ratioof 0.03%
aswell asNucleus andF-actin at a ratio of 0.4%. For an imagewith 128 × 128

pixels, our DCCM can achieve imaging rates of up to 1500 fps and 24.58
megapixels per secondbasedon theDMDwith the refresh rate of 15,000 Hz.
Notably, the imaging speed could be further increased to 3200 fps if we use
the DMD with the highest refresh rate (32 kHz) currently available41. Fur-
thermore, we employ a high-throughput aggregation collection to achieve
weak signal detection at the single-photon level using a highly sensitive
photon counter detector. In experiments, our compressive imaging can be
accomplished with an average of no more than 0.4 photons per pixel in a
single-pattern measurement. Consequently, the phototoxicity can be
reduced by ourDCCM, since it does not require high excitation light power.
In total, this study provides a fast confocal microscopy imaging method
based on the principle of SPI and ourwork has the potential to be applied in
3D microscopic imaging of thick fluorescent samples and living cells.

Results
Principle of DCCM
An illustration of our experimental setup is shown in Fig. 1. The system
consists of a hardware device (DCCM) and a deep learning-based recon-
struction algorithm (DCCM-Net). DCCM is a combination of SPI and
PAM. Exploiting the advantages of the symmetrical reflective properties of
DMD, we symmetrically place the SPI and PAM according to the reflective
angle of DMD. In this way, the DMD can serve as a coding mask for SPI as
well as a pinhole for confocal microscopic imaging. Therefore, the DCCM
can capture single-pixel compressed data and confocal image data in pairs

Fig. 1 | Workflow overview of the deep compressive confocal microscope. Our
system consists of three parts (a), (b), and (c). a Schematic of single-pixel imaging
setup. A sequence of modulation patterns is adaptively learned for compressive
single-pixel imaging sampling. b Schematic of programmable array microscope.
Multi-point or multi-line patterns are utilized to implement the pinhole function to
obtain the confocal images, which act as the ground truth for the following network
training. c The overall structure of our deep learning reconstruction algorithm
(DCCM-Net). The dataset for training comes from the modulation patterns for

single-pixel imaging as well as the registered measurement and image data pairs
captured by our single-pixel imaging and programmable array microscope systems
in (a) and (b), respectively. In the actual application, only a and c are employed and
activated to achieve high-speed and low-phototoxicity confocal microscopic ima-
ging. L lens, DB dichroic beamsplitter, PMT photomultiplier tube, sCMOS scientific
complementary metal-oxide-semiconductor, GT ground truth, s scaling factor, Fext

extraction module, Frec recovery module, Conv convolution.
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for network training. Our network is trained on the pairwise data collected
by the DCCM system rather than the simulated data, enabling themodel to
consider the influence of noise distribution in real scenarios. Moreover, our
experiments demonstrate that theDCCM-Net trained on real sampled data
outperforms that trained on simulated data. (refer to Supplementary Fig. S1
for details).

Experimental setup
Figure 1a schematically illustrates the experimental setup of SPI. The power
tunable laser, operating at 405 nmor 488 nm, is used as the light source. The
laser beam is reflected by a dichroic beamsplitter to the DMD (V7001
DLP7000&DLPC410), which modulates the laser and then illuminates the
sample through an objective (Nikon 20×/0.75NA). The sample is selectively
excited and emits fluorescence at the focal plane of the objective in accor-
dancewith theDMDmodulation pattern.Note that themodulation pattern
is a trainable component, which is adaptively learned from the sample (see
“Methods” section). Subsequently, the fluorescence returns to the DMD
along the excitation path and is focused onto a photon-counting photo-
multiplier tube (PMT, H10682-210 Hamamatsu) module, allowing weak
signal detection. We use the PAM imaging, as shown in Fig. 1b, to acquire
the confocal image, which is utilized as the ground truth for the training of
DCCM-Net. To obtain confocal images with high quality, we turn the laser
power to themaximumand set a longer exposure time for the sCOMSwhen
the PAMmodule is activated. The sample is selectively excited according to
the multi-point or multi-line pinhole pattern displayed by the DMD. The
DMD only reflects the fluorescence in the white regions of the modulation
patterns in Fig. 1b, and then the reflected fluorescence is recorded by the
sCMOS (ORCA-Flash 4.0LT+Hamamatsu) after a DB. Here, the DMD is
used as a confocal pinhole because it is in theback focal planeof the objective
lens. More details can be found in “Methods” section.

Figure 1c provides the architecture of the DCCM-Net for the image
reconstruction. The DCCM-Net is based on the deep unfolding
architecture40, which can efficiently estimate the confocal image from the
corresponding single-pixel compressed measurement obtained by the SPI.
As Fig. 1c exhibits, DCCM-Net takes the initial image estimation from the
measurement and the sampling patterns as inputs and generates the non-
linearly recovered result through a fast-forward pass. It contains several

cascaded deep-stage modules sandwiched by two convolution layers. The
stagemodules share the same structure and are constructed bymapping the
original hand-crafted optimization steps of PGD into convolutional neural
network components, with each PGD iteration corresponding to a stage
module. The details of the recovery subnet (RS) can be found in Supple-
mentary Fig. S2. During training, the model parameters are jointly end-to-
end iteratively updated on our collected paired and registered data from the
DCCM system. Each data pair is augmented by randomly selecting some
sets of compressed measurement elements and their corresponding sam-
pling patterns. This strategy enables our method to handle the CS imaging
tasks of arbitrary sampling ratios by using a single network model trained
once. The details regarding the design of our DCCM-Net are provided in
“Methods” section.

The DCCM can provide the DCCM-Net with a large number of
training datasets from various samples or environments. This can improve
the generalization and robustness of our network. Meanwhile, the DCCM-
Net can also provideDCCMwith optimalmodulationpatterns basedon the
dataset characteristics of different scenarios. This can improve the signal
acquisition capability of theDCCMand realize confocal imagingwith lower
sampling ratios (see Supplementary Fig. S3 for details). Therefore, the
DCCM and DCCM-Net can achieve positive feedback iteration.

Performance of DCCM on cell samples
To verify the performance of theDCCM,we perform experimental imaging
of Nucleus and F-actin. Figure 2a displays the reconstructed results of the
Nucleus and F-actin using three different reconstruction algorithms at
sampling ratios of 0.5%, 1%, and 2%. The sampling ratio is calculated by
dividing the number of sample patterns by the total number (16,384) of
pixels of the image. The size of all reconstructed images shown in this study
is 128 × 128, and the results of reconstruction at more sampling ratios are
provided in Supplementary Fig. S4. We observe that the DCCM-Net has
higher reconstruction quality than other conventional algorithms including
U-Net38 and TVAL342 at low sampling ratios. It provides an almost lossless
reconstruction at a sampling ratio of 1% and achieves a higher resolution
comparedwithwide-field imaging.Here, thewide-field images are obtained
by the sCMOS with the DMD displaying an all-“on” pattern. From the
DCCM-Net reconstruction results, we can clearly observe the nuclear

Fig. 2 | Experimental comparisons of various imaging methods at different
sampling ratios. a Experiment results for Nucleus and F-actin. Each row within the
group represents the reconstructed results of the same object by different methods,
while each column depicts the results of different objects reconstructed by the same
method. The pixel number isN ¼ 128 × 128, and the corresponding scale bars are 20

μm. bThe enlarged views of the boxed areas in (a) and the intensity profile along the
corresponding line trace. c The curves of our peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) scores with different sampling ratios.
PAM programmable array microscope, WF wide field, GT ground truth.
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speckles43 and more F-actin details. Figure 2b shows the enlarged views of
the boxed areas in Fig. 2a and intensity profiles along the lines trace. The
nuclear speckles can be clearly seen in the confocal image, acting as ground
truth (GT) for comparison, directly obtained from PAM, while the wide-
field image has a lower resolution. The red solid line (our network output)
almost coincides with the purple dashed one (GT), which proves the
reliability of the reconstruction by our method.

Compared with other deep learning-based reconstruction algorithms,
our DCCM-Net is independent of the sampling ratios and thus can be
applied to any SPI measurements without retraining the model again (see
Supplementary Fig. S5 for details). For the reconstruction of the U-Net in
Fig. 2, we need to train it three times at different sampling ratios of 0.5%, 1%,
and 2%, while our network only needs to be trained once with the same
amount of data required. In Fig. 2c, we demonstrate the results of Peak
signal-to-noise ratio (PSNR) and structural similarity indexmeasure (SSIM)
scores under various sampling ratios. It is evident that the image recon-
struction quality improves as the sampling ratio increases and reaches its
peak when the sampling ratio exceeds approximately 2%. In addition, the
reconstruction quality of F-actin images is lower compared to Nucleus
probably due to the influence of complex morphological structures.

The high-speed zoom imaging mode of DCCM
To further improve the imaging speedofDCCM,we introduce ahigh-speed
zoom imaging mode, which consists of a neighborhood merging sampling
and the corresponding neighborhood unmerging reconstruction. The
neighborhood merging sampling is implemented by merging neighbor
pixels in the modulation patterns, which scales the resolution of the mod-
ulation pattern while keeping the same field of view. For example, the
128 × 128 modulation pattern becomes 32 × 32 after the 4 × 4 pixels mer-
ging operation. Although this approach reduces the number of measure-
ments required, it also leads toa lower resolutionof the reconstructed image.
To preserve the original imaging resolution of 128 × 128, we replace the
merging sampling patterns with the neighborhood unmerging patterns as
the input of DCCM-Net. The unmerging patterns are spatially upscaled
sampling patterns of size 128 × 128 from the merged 32 × 32 ones used in

SPI sampling by the nearest interpolation. Thus, DCCM enables confocal
image reconstruction at ultra-low sampling ratios in zoom imaging mode.

We employ fluorescent microspheres44 of size 5 μm to validate the
high-speed zoom imaging mode. Specifically, we merge the pixels of the
original adaptively learned 128 × 128 pattern using a 4 × 4 sizedwindow for
SPI sampling, followed by the neighborhood unmerging patterns for jointly
achieving fast neighborhood unmerging and reconstruction. Figure 3a
presents the results of our zoom imaging experiments. Ourmethod realized
confocal imaging of fluorescent microspheres in 4× zoom imaging mode,
with a minimum sampling ratio of only 0.03%, corresponding to the
numberofmeasurementsm = 5.The sampling ratio required is almost three
orders of magnitude lower than the conventional compressive sensing
reconstruction42. According to the DMD refresh rate R ¼ 15kHz, the
imaging frame rate F ¼ R

2m ¼ 1500 fps in the +1/−1 sampling mode28,
thereby providing an opportunity to observe transient life activities. In
addition, the curves of PSNR and SSIM in Fig. 3b show that the 4× zoom
imaging quality of the fluorescent microspheres is superior to that of the 1×
zoom experiment at an arbitrary sampling ratio in [0, 0.03]. In Fig. 3a, the
PNSR and SSIM scores of the fluorescent spheres reconstruction at a
sampling ratio of 0.03% in 4× imaging mode are 34.74 and 0.9283,
respectively. Note that the 1× zoom is the common imaging mode, which
employs the 128 × 128 pattern without pixel merging.

The zoom imaging mode has been demonstrated to effectively reduce
the sampling ratio compared to traditional compressive sensing imaging
modes. Moreover, it can achieve image reconstruction with a minimum
sampling ratio of 0.03% in our test. Meanwhile, the minimum sampling
ratio required for DCCM reconstruction may be affected by different sce-
nario sparsity and sample types. We list the reconstruction results of
fluorescent microspheres for different scene sparsity in Supplementary
Fig. S6. The minimum sampling ratio required for DCCM reconstruction
increases with decreasing sparsity of the image. We also performed
experimental analysis on different fluorescent samples in the next section.

Furthermore, we validated and analyzed the zoom imaging mode on
cell samples.We conduct experiments onNucleus using 4× zoom, 2× zoom,
and 1× zoom. The 2× zoommode utilizes a 2 × 2 sizedwindow tomerge the

Fig. 3 | The high-speed zoom imaging of fluor-
escent microsphere. a Experimental results of
fluorescent microsphere in our 4× and 1× zoom
imaging modes with different sampling ratios of
0.2%, 0.1%, 0.05%, and 0.03%. The orange curves in
the inset are the intensity profile along the corre-
sponding orange line trace. The corresponding scale
bar is 20 μm. b The curves of peak signal-to-noise
ratio (PSNR) and structural similarity index mea-
sure (SSIM) with different sampling ratios. PAM
programmable array microscope, DCCM deep
compressive confocal microscope, GT ground truth,
WF wide field.
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original adaptively learned 128 × 128 pattern. The experimental results are
shown in Fig. 4a. It can be clearly seen that the 4× zoom imaging realizes the
reconstruction of confocal images at aminimumsampling ratio of 0.4% (the
number of measurements m = 60). According to the curve of PSNR with
different sampling ratios, the 4× zoom imaging mode achieves the highest
PSNR scores than the 1× zoom imaging mode and the 2× zoom imaging
mode when sampling ratios are below approximately 2.7%. The 4× zoom
enables image reconstruction with the least amounts of measurements,
while the reduced resolution of the reconstructed image is compensated by
the network. Additionally, we can realize the confocal imaging (Fig. 4b) and
3D imaging (Supplementary Fig. S7) of F-actin using 4× zoom mode at a
sampling rate of 0.4% (the number of measurementsm = 60).

In addition, to validate the generalization ability of DCCM-Net
for different scenarios, we also performed compressive confocal
reconstruction of the potato tubers autofluorescence at ultra-low
sampling ratios. The result please see Supplementary Fig. S8. As
shown in the above results, the zoom imaging mode has the best
performance on the fluorescent microsphere compared to the cell
samples and potato tubers autofluorescence, which may be attributed
to the properties of fluorescent microsphere samples, including the
sparsity, high Signal-to-noise ratio (SNR), and morphological sim-
plicity. This indicates the performance of our method in cell imaging
may be further enhanced by utilizing samples with more sparse and
simple structures or the markers with higher fluorescence quantum
efficiency.

Discussion
In this work, our proposed DCCM and DCCM-Net enable high-speed
confocal imaging at ultra-low sampling ratios for deeply compressed image
reconstruction. Experimental results demonstrate that DCCM-Net can
achieve image reconstruction within 50ms, exceeding the speeds of tradi-
tional reconstruction algorithms based on iterative optimization, which
facilitates real-time image processing and analysis.

The innovative high-speed zoom imaging mode greatly reduces the
sampling ratio compared to the traditional single-pixel imaging method.
However, the minimum sampling ratio required for imaging is affected by
the type of sample. In this paper, we performed experiments on four types of
samples which are fluorescent spheres, Nucleus, F-actin, and potato tuber

autofluorescence. The minimum sampling ratio for Nucleus, F-actin, and
potato tuber image reconstruction is 0.4%. Moreover, we can achieve
fluorescent sphere image reconstruction with aminimum sampling ratio of
0.03%. Based on the above results, we found that compared to fluorescent
spheres, the other three fluorescent samples have more complex structural
features and lower image sparsity, which can represent a wider range of
fluorescent samples. Therefore, we believe that DCCM can perform image
reconstruction at a sampling ratio of about 0.4% for conventional fluor-
escent samples. For sampleswith high sparsity and single shape,DCCMcan
realize a lower sampling ratio to achieve the reconstruction.

TheDCCMhas the ability todetect extremelyweak signals bymeansof
high-throughput aggregation collection via a single-photon detector PMT.
Figure 5a shows that our DCCM equipped withDCCM-Net achieves high-
quality confocal imaging even in extremely weak signal conditions, but the
traditional point-by-point scanning (PBPS) detection method fails. In
Fig. 5a, the laser power densities are only 0.09W cm�2, 0.4W cm�2, and
4W cm�2 for experiments on fluorescent microspheres, Nucleus, and F-
actin, respectively, thus enabling low-phototoxicity observation.Asdepicted
in Fig. 5b, we provide the probability distribution of the average number of
photons per pixel detected in a single-pattern measurement for different
samples. Evidently, the result in fluorescent microsphere imaging is con-
centrated around 0.4 photons per pixel. It is calculated by dividing the
average number of photons detected in a single-pattern measurement
(around 400 photons) by the number of valid pixels in the image (nearly
1000 pixels). The number of valid pixels refers to the area occupied by the
sample in the image. The average photons per pixel of Nucleus and F-actin
are 0.4 and 0.2, respectively. Suchweak signal conditions are challenging for
conventional imaging techniques, which further reveals the superiority of
our DCCM.

Conclusion
In conclusion, we develop a DCCM system along with a DCCM-Net
reconstruction algorithm, which enables high-speed, low-phototoxicity
confocal microscopy imaging. Based on the symmetric reflection properties
ofDMD,we can acquire the paired and registereddatasets using ourDCCM
system. These datasets are used as training sets for the DCCM-Net to
improve its robustness to realistic noise.Moreover, theDCCMbenefits from
the optimal data-driven learnedmodulation patterns to improve its sensing

Fig. 4 | The high-speed zoom imaging for Nucleus
and F-actin samples. a Experimental results for
Nucleus in 4×, 2×, and 1× zoom imagingmodes with
different sampling ratios of 0.5%, 0.4%, and 0.3%.
The bottom left corner shows the curves of peak
signal-to-noise ratio (PSNR) scores with different
sampling ratios in the inset. b Experimental results
for F-actin at the 4× zoom imaging mode with the
same sampling ratios as in (a). The corresponding
scale bars in (a) and (b) are both 20 μm. PAM pro-
grammable array microscope, DCCM deep com-
pressive confocal microscope, WF wide field, GT
ground truth.
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ability for SPI. The performance of such a positive feedback iterative system
may be continually enhanced as the dataset increases. Especially, we inno-
vatively proposed a high-speed zoom imaging mode based on the char-
acteristics of our system. As a result, the DCCM achieves single-pixel
confocal imagingwith a sampling ratioof about0.03%,which is almost three
orders of magnitude lower than the sampling ratio required for the con-
ventional CS method. Furthermore, it realizes single-photon level confocal
imaging with no more than 0.4 photons per pixel on average in the single-
pattern measurement. This reduces the excitation light power requirement,
leading to lowphototoxicity.Webelieve thatDCCMwould pave theway for
high-speed long-duration 3D confocal imaging of living biological samples
in the future. Meanwhile, by incorporating Time-Correlated Single Photon
Counting and a spectroscopic prism, theDCCMcan be extended to achieve
fluorescence lifetimeand spectral imaging, thereby enabling awider rangeof
multimodal biomicroscopic imaging studies.

Methods
System calibration
In the DCCM system, the size and resolution of the reconstructed
image are determined by the pattern on the DMD since the principle
of single-pixel imaging is to reconstruct the image on DMD mirrors.
Moreover, the symmetrical optical paths of SPI and PAM along the
DMD normal axis enable the DCCM to pair the single-pixel acqui-
sition data with confocal images, thus it is possible to perform the
pixel-by-pixel alignment between the sCMOS and DMD. To imple-
ment this, we first load the stripe pattern onto the DMD, followed by
irradiating the DMD vertically with a halogen light source. Conse-
quently, the sCMOS receives the reflective stripe pattern from the
DMD. We then adjust the three-axis rotation stage of the sCMOS
base to align the bright stripes parallel to the camera element col-
umns or rows. Finally, we resize the imaging by adjusting the zoom
lens focal length to ensure that the spacing and length of bright
stripes captured by the sCMOS are basically consistent with the stripe
pattern. However, the reflection property of the DMD micromirrors
along the normal ±12° direction causes a 24° angle between the DMD
micromirror array and the sCMOS detector array, leading to image
distortion which is equivalent to a perspective transformation of the
sCMOS array plane with respect to the DMD array plane. To address
this, we use a telecentric lens (Computar TEC55 – 55 mm Telecentric
Lens) to increase the depth of field and apply an affine transforma-
tion to correct the image distortion, thus ensuring pixel-by-pixel
matching between the DMD and sCMOS (see Supplementary Fig. S9
for the details).

Acquisition of ground truth for network training
To ensure the reconstruction with high quality, the confocal images cap-
tured by our DCCM are utilized as the ground truth for the training of
DCCM-Net. Due to the programmable properties of the DMD, the DCCM
can offer two confocal imaging schemes for samples with different

fluorescence intensities. The first is a single-exposure confocal imaging
scheme,which is suitable for sampleswith highfluorescence quantumyield,
such as fluorescent spheres. In this scheme, the exposure time of sCMOS is
the accumulation of different multi-point scanning patterns of DMD. The
second is a multi-exposure stack scanning scheme for samples with weak
fluorescence. This scheme requires simultaneous triggering of the camera
exposure and DMD. The final confocal image is the stack of images with
different multi-line patterns. In addition, the pixel alignment between
sCMOS and DMD ensures that the confocal image and the single-pixel
compressed data are paired and registered. Notably, the DCCM can switch
freely between wide-field, SPI, and confocal imaging as required. More
information on the confocal image acquired by PAM can be found in
Supplementary Fig. S10.

The deep SPI reconstruction algorithm
Mathematically, the imaging task of DCCM is to infer the object intensity
x 2 RN from its low-dimensional single-pixel measurement y 2 RM

undernoisy acquisition y ¼ Axþ n,whereN ¼ H ×W andM are the sizes
of the target image and observed measurement, the linear projection is
achieved by sampling patterns A 2 RM ×N , n 2 RM is the observation
noise, and the sampling ratio is defined as r ¼ M

N . In DCCM, the extremely
small value r with M≪N brings not only the benefits of sampling cost
reduction (e.g. sampling acceleration and energy saving), but also the dif-
ficulty of predicting x from only y and A, since it becomes a seriously ill-
posed problem without other information. In practice, two fundamental
issues of CS imaging are the design of sampling patterns and the develop-
ment of reconstruction algorithms45, which are resolved by our proposed
learnable bipolar patterns and deep unrolled DCCM-Net.

To enhance the sensing ability and facilitate our optical implementa-
tion, we propose to learn bipolar sampling pattern A from some pre-
collected ground truths of microscopic intensity. Specifically, we obtain
1000 images of a different Nucleus sample from our confocal imaging
branch, introduce a learnable auxiliary variableΦ 2 RM ×N and utilize the
following ‘2 loss function to optimize Φ with given ground truth x:

Lmatrix Φð Þ ¼ 1
N
jjATAx � xjj22; A ¼ 1

ffiffiffiffi
N

p SignðΦÞ: ð1Þ

Here, themean squared error between x and the initial estimationATy
of its simulated CS measurement Ax is employed as a metric of the
information-preserving ability of A for microscopic image domains. The
bipolar function Sign �ð Þ maps all the non-negative pattern elements to +1
and theothers to−1. Its derivative is set to 1 for ensuring thedifferentiability
in back-propagation. After our training byLmatrix in Eq. (1), the adaptively
learned sampling patterns are generated from Φ and then adopted in the
single-pixel imaging branch of DCCM. And one can randomly select m
rows (m≤M) from the learnable A to obtain new sampling patterns with
ratio m

N.

Fig. 5 | The analysis of imaging at the single-
photon level. a The imaging results of DCCM and
PBPS under the same light intensity and the same
refresh rate of DMD. The corresponding scale bar is
20 μm. F.M.means FluorescentMicrospheres. bThe
probability distribution of the average number of
photons per pixel detected in a single-pattern mea-
surement. DCCM deep compressive confocal
microscope, PBPS point-by-point scanning.
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The CS imaging task in DCCM can be formulated as the following
regularized optimization problem:

minx
1
2
jjAx � yjj22 þ λRðxÞ; ð2Þ

where R : RN!R is a regularization function assumed to be convex with
the weighting factor λ 2 Rþ. To exploit both the merits of traditional
optimization frameworks and neural networks, we adopt the proximal
gradient descent (PGD) algorithm39 as the basic framework to guide our
architecture design of DCCM-Net. Specifically, given an initialization x̂ð0Þ,
PGDsolves theCSproblem inEq. (2) by iterating between the following two
update steps:

z kð Þ ¼ x̂ k�1ð Þ � ρAT Ax̂ k�1ð Þ � y
� � 2 RN ; ð3Þ

x̂ kð Þ ¼ proxλR z kð Þ� � ¼ argminx
1
2
jjx � z kð Þjj22 þ λRðxÞ 2 RN ; ð4Þ

where k andρ denote the iteration indexand step size, respectively. Equation
(3) is the gradient descent step, while Eq. (4) is the proximal mapping step
that is critical to solving Eq. (2) with prior knowledge of microscopic
images46.

As Fig. 1b illustrates, our DCCM-Net F is composed of two cas-
caded sub-networks: an initialization subnet (IS) FIS and a deep PGD-
unrolling RS FRS. The reconstruction is achieved by
x̂ ¼ Fðy;A; rÞ ¼ FRSðFISðy;AÞ; y;A; rÞ. Given a single-pixel measure-
ment y, in our IS, the initial intensity estimation is obtained by
x̂init ¼ FIS y;A

� � ¼ ATy, which efficiently addresses the dimension
mismatch between the measurement domain (RM) and image domain
(RN or RH ×W) without introducing extra parameters. In RS, to make
physics information of y, A, and r available to be sufficiently utilized and
adaptively fused in harmony, we propose to obtain the shallow feature of
our initialization by an extraction module Fext, dynamically conditioned
by the sampling ratio, then refine the feature through K PGD stage
modules FðkÞ

stage ðk ¼ 1; 2; � � � ;KÞ by mapping Eqs. (3) and (4) to deep
network components, and finally transform the enhanced feature to
image domain by a recovery module Frec. Formally, our RS can be
expressed as
x̂ ¼ FRSðx̂init; y;A; rÞ ¼ Frecð� � � F kð Þ

stageð� � � Fextðx̂init; rÞ � � � ; y;AÞ � � �Þ. The
concrete structure design of our RS and more details about our DCCM-
Net are given in Supplementary Fig. S2.

As described above, our adaptive bipolar sampling patterns and
DCCM-Net can be implemented and learned accordingly. Concretely, the
trainable parameter sets for A and DCCM-Net are expressed as Θmatrix ¼
fΦg and ΘDCCM�Net ¼ fFext; Frecg∪ fF kð Þ

stageg
K

k¼1
, respectively. We first train

Θmatrix byLmatrix in Eq. (1) and then employ the learned A to capture the
registered data pairs by our two optical acquisition branches to form a
dataset fðyi; xiÞgli¼1. For a given data pair ðy; xÞ, we use the following ‘1 loss
function to optimize all the parameters in ΘDCCM�Net indiscriminately:

LDCCM�Net ΘDCCM�Net

� � ¼ 1
N
jjFðy;A; rÞ � xjj1: ð5Þ

To improve the data diversity and make our DCCM-Net scalable to
arbitrary sampling ratios in fmNgMm¼1, we develop a random data augmen-
tation mechanism for training enhancement. Specifically, given a training
data pair y; x

� �
, we randomly select a measurement number m from

f1; � � � ;Mg and then randomly select m elements from y and the corre-
sponding m rows from A to form a new pair y0; x

� �
with patterns A0 and

sampling ratio r0 ¼ m
N ≤ r. It is verified to be effective by our experiments

with the theoretical potential of generating 2M � 1
� �

data pairswith various
levels of reconstruction difficulties from an original single pair y; x

� �
of

ratio r ¼ M
N .

In the high-speed zoom imaging mode, the adaptively learned sam-
plingpatterns are downscaledby averagepooling and thenbipolarizedusing
Sign �ð Þ for our neighborhood merging sampling. For the corresponding
deep neighborhood unmerging reconstruction, we replace the original
sampling patterns for DCCM-Net with the nearest upscaled new ones to
obtain the ultra-ratio-enhanced network without introducing structural
modifications.

In our implementation, we set image size N ¼ H ×W ¼ 16384 with
H ¼ W ¼ 128 and maximal measurement size M ¼ 5000. For DCCM-
Net, we set the stage number K ¼ 9 and feature channel number C ¼ 128
by default. For each sample, we collect l ¼ 1200 data pairs and randomly
select 50 pairs to construct the test set, and collect the other 1150 pairs to
form the training set. The batch size is set to B ¼ 16. Our learnable bipolar
sampling patterns A and DCCM-Net are both implemented in PyTorch47

and separately trained as above described by the Adam48 optimizer with a
momentum of 0.9 and a weight decay of 0.999. It takes about a week in total
to learn sampling patterns and a DCCM-Net on an NVIDIA RTX 4090
GPU with 1:5× 106 iterations. The learning rate is initialized to 2× 10�4

and finally decayed to 2× 10�6.
Peak signal-to-noise ratio (PSNR) and structural similarity index

measure (SSIM)49 are employed as the metrics for all the quantitative eva-
luations. We plot the variation of PSNR and SSIM values with sampling
ratio, respectively. To assess the performance at a specific sampling ratio
M=N (M ¼ 1; 2; :::; 5000), we adopt a randomized selection strategy. In
our study, for each test image of size 128× 128, we initially collected 5000
measurements using our learned sampling patterns A. From the 5000
measurements, we randomly selectM observation elements to form a new
observation vector y0: Simultaneously, we select corresponding rows from
the original sampling matrix to create a new sampling pattern A0, aligning
with the selectedM measurement elements. This process ensures that y0 ¼
A0x holds under ideal conditions. For reconstruction at the given sampling
ratioM=N , we employ A0 to reconstruct an estimate of x from y0, applying
thismethod uniformly across all images in our test set. The PSNR and SSIM
for each image are calculated by comparing the reconstructed image,
obtained from y0 using the new sampling pattern A0 and our DCCM-Net,
against the original image x: This approach allows us to compute the PSNR
and SSIM for each image under the specified sampling conditions. The
average PSNR and SSIM values across the test set provide a comprehensive
evaluation of our reconstruction quality at the given sampling ratio.

Cell culture and staining
The NIH3T3 cells and MC38 cells are maintained in RPMI1640 medium
supplemented with 10% FBS, and 1% pen/strep antibiotics (all from
GIBCO). Prior to staining, a total of 10,000 cells are seeded on 18mm
diameter round coverslips and returned to the CO2 incubator for 24 h.
Following this, the cells are fixed with 4% paraformaldehyde in 1× PBS for
15min at room temperature and washed twice with 1× PBS. After that, the
cells are permeated with 0.2% TritonX-100 supplemented with 3% BSA in
1× PBS for 30min at room temperature. The Tom20 antibody (rabbit-anti-
mouse, from Santa Cruz) is 500× diluted into 3% BSA and applied to the
permeatedcell at 4 °Covernight formitochondria labeling.Onthe following
day, the cells arewashed 5 timeswith 3%BSAand incubated for 2 h at room
temperature with 200× diluted Alexa flour-568 labeled goat-anti-rabbit
antibody for mitochondrial fluorescent staining. After that, the cells are
washed 5 timeswith 3%BSA, and the cells are incubated for 30min at room
temperature with 100× diluted AlexaFluor-488 phalloidin for F-actin
fluorescent staining. Following this, the cells are washed 5 times with 1×
PBS, counterstained with 2 μg mL−1 DAPI, 1× PBS washed, and mounted
onglass slideswithAntiFademountingmedium(fromThermoFisher).The
prepared samples are then ready for imaging.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
Data underlying the results presented in this paper are not publicly available
but may be obtained from the authors upon reasonable request.

Code availability
For reproducible research, the complete source code of DCCM-Net can be
obtained from the following publicly accessible resource50.
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