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Reliable deep learning in anomalous 
diffusion against out-of-distribution 
dynamics

Xiaochen Feng    1,5, Hao Sha1,5, Yongbing Zhang    1,5 , Yaoquan Su2, Shuai Liu2, 
Yuan Jiang1, Shangguo Hou    3, Sanyang Han2 & Xiangyang Ji    4 

Anomalous diffusion plays a crucial rule in understanding molecular-level 
dynamics by offering valuable insights into molecular interactions, mobility 
states and the physical properties of systems across both biological and 
materials sciences. Deep-learning techniques have recently outperformed 
conventional statistical methods in anomalous diffusion recognition. 
However, deep-learning networks are typically trained by data with limited 
distribution, which inevitably fail to recognize unknown diffusion models 
and misinterpret dynamics when confronted with out-of-distribution (OOD) 
scenarios. In this work, we present a general framework for evaluating 
deep-learning-based OOD dynamics-detection methods. We further 
develop a baseline approach that achieves robust OOD dynamics detection 
as well as accurate recognition of in-distribution anomalous diffusion. 
We demonstrate that this method enables a reliable characterization of 
complex behaviors across a wide range of experimentally diverse systems, 
including nicotinic acetylcholine receptors in membranes, fluorescent 
beads in dextran solutions and silver nanoparticles undergoing active 
endocytosis.

Diffusion is an important phenomenon across numerous scientific 
domains, including physics1, chemistry2, biology3, geophysics4, mate-
rials science5 and finance6. To comprehend normal diffusion in the 
molecular nature, Brownian motion—a classical model of random 
walks—is commonly regarded as a cornerstone concept in diffusion- 
related research. However, due to factors such as inhomogeneous 
environments7, transient binding8 and molecular crowding9, diffusion 
in real-world settings sometimes exhibits nonlinear, unstable and 
memory-dependent properties, deviating from the classical assump-
tions of normal diffusion. This behavior is recognized as anomalous 
diffusion10. The molecular dynamics of anomalous diffusion represents 
a deviation from Brownian motion, whose mean-squared displace-
ment (MSD) no longer grows linearly but with power law to time t  

(MSD ∝ t a,a ≠ 1)11. To describe anomalous diffusion, many types of 
models were established such as fractional Brownian motion (FBM)12, 
continuous-time random walks (CTRW)13, Lévy walks (LW)14, scaled 
Brownian motion (SBM)15 and annealed transient time motion (ATTM)16. 
With well-defined mechanisms, these models equip researchers with 
sophisticated mathematical tools to elucidate complex dynamics  
in diverse systems.

To prevent the established models from being incorrectly associ-
ated, it is critical to develop methods capable of accurately categorizing 
observed trajectories into their corresponding models17. Prevalent 
approaches rely on statistical observables to assess diffusion patterns. 
For example, time-averaged MSD18 and co-difference19 are used to dis-
tinguish non-ergodic from ergodic diffusion; and the p-variation test20 
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our work provides a guidance to produce reliable deep-learning predic-
tions and avoid misinterpretation. We demonstrate that deep learning 
integrated with function of OOD detection is a promising tool for the 
analysis of real dynamic data, providing reliable and interesting insight 
into the feature of unknown dynamics and complex systems.

Results
The deployment process of deep-learning-based methods for anoma-
lous diffusion recognition is depicted in Fig. 1a. These methods oper-
ate under the closed-world assumption, where the test data are drawn 
from the same distribution as the source data for training, known as 
ID. Deep learning can therefore only perform well in identifying anoma-
lous diffusion models with distributions that align with the source data, 
while incorrectly predicting other types of dynamics (Supplementary 
Fig. 1). Given that the distribution of observed data is uncertain, 
deep-learning predictions will be unreliable in real-world scenarios. 
To elucidate this problem, we divide the differences among trajectories 
from various distributions into semantic (for example, trajectories 
drawn from different dynamics) and covariate shifts (for example, 
trajectories originating from the same dynamics but presenting in 
different forms, such as FBMs with different anomalous exponents α). 
In Fig. 1b–d, we propose our OOD dynamics-detection method that is 
designed to improve the reliability of deep learning for anomalous 
diffusion, enabling the network to accurately identify ID diffusion 
models and simultaneously detect the OOD sample that undergoes a 
semantic shift. In the data preparation, we employ the concept of 
Mixup28—a technique that creates new examples by blending pairs of 
data and labels—to generate simulated outliers with semantic shift, 
thereby broadening the training distribution. For the training proce-
dure, we develop a multi-component loss function that uses generated 
outliers to enhance the network’s boundary perception of the source 
data domain 𝒟𝒟s, thereby improving regularization. Furthermore, 
inspired by the success of BNNs in estimating the uncertainty of anoma-
lous diffusion recognition23, we applied the last-layer Laplace approxi-
mation (LLLA)29—a Bayesian method suitable for already-trained 
networks—to compute confidence scores. Unlike traditional Bayesian 
frameworks that rely on maximum a posteriori (MAP) estimates, the 
LLLA captures more information about the uncertainty surrounding 
the MAP estimate and thus reduces the overconfidence in OOD detec-
tion. To conduct a comprehensive evaluation, we use the andi-datasets 
package provided by AnDi Challenge to generate simulated datasets 
with ground-truth values of anomalous exponents and diffusion  
models (including ATTM, CTRW, FBM, LW and SBM). The backbone  
of the network uses a CNN–transformer-based architecture (Supple-
mentary Fig. 2)30. For the task of OOD dynamics detection, additional 
types of motions are introduced, including the directed Brownian 
motion (DBM)31, the two-state model (TSM)32, the combined anomalous 
diffusion motion (CBM)33, the Sinai diffusion model (SINAI)34 and  
the Ornstein–Uhlenbeck (OU) process35. It should be noted that  
the TSM in our study combines Brownian and obstructed diffusion 
mechanisms, whereas the CBM combines distinct anomalous diffusion 
mechanisms.

Benchmark of OOD dynamics detection
We use the same models in the AnDi Challenge as ID samples to  
benchmark the performance in anomalous diffusion recognition. Two 
evaluation strategies are employed regarding OOD dynamics definition 
in both the training and testing procedures. We designate all models 
from the AnDi Challenge (A.C.F.L.S, including ATTM, CTRW, FBM, LW 
and SBM) as ID and simulate other common dynamics (for example, 
DBM, TSM, CBM, SINAI and OU) as OOD to perform OOD dynamics 
detection. We also adopt cross-validation. We randomly select a model 
in the A.C.F.L.S as OOD, and the remaining models as ID. This strategy 
allows for a more comprehensive exploration of both ID and OOD 
domains. Therefore, ten types of simulated datasets (ID–OOD) are 

and velocity autocorrelation21 are applied to distinguish between FBM 
and CTRW. Although these methods are deployed easily, it is difficult 
to achieve satisfactory performance when higher levels of recognition 
granularity and scope are required. With the rapid advancement of 
artificial intelligence, deep learning has changed the landscape of this 
task. The Anomalous Diffusion (AnDi) Challenge22 held in 2020 sets a 
benchmark for the recognition of anomalous diffusion, in which most 
deep-learning approaches showed remarkable success. The impressive 
performance of deep learning has encouraged its widespread adoption 
in recent diffusion-related research.

However, the reliability of deep learning in anomalous diffusion 
recognition remains a concern. As the distribution of real-world data is 
uncertain, observed trajectories may either be in-distribution (ID) sam-
ples covered by the training distribution or out-of-distribution (OOD) 
samples that deviate from it. The OOD trajectories will be incorrectly 
identified as one of ID models by the network. Consequently, apply-
ing deep learning to the analysis of real-world dynamics could result 
in unreliable recognition. To enhance the reliability of predictions, 
Bayesian neural networks (BNN) have been proposed for estimating 
the uncertainty of anomalous diffusion recognition23, thereby miti-
gating the likelihood of model misuse. However, their effectiveness 
is demonstrated primarily in confident ID recognition and does not 
adequately consider OOD dynamics. For detecting OOD dynamics, 
the unsupervised autoencoder has emerged as a promising method, 
leveraging the reconstruction loss to identify anomalies24. Neverthe-
less, integrating this method with ID anomalous diffusion recogni-
tion remains challenging. To the best of our knowledge, there are few  
studies considering OOD samples in anomalous diffusion recognition, 
although OOD dynamics is ubiquitous in the real-world scenarios. 
Current deep-learning-based methods therefore still fall short of the 
reliability required for scientific research and are far from achieving 
robust anomalous diffusion recognition expected to identify both 
in-distribution and OOD dynamics.

As deep learning consistently encounters the potential threat from 
OOD samples, OOD detection is a critical aspect for ensuring the safety 
of AI systems. There has been a rich line of research on OOD detection 
in recent years, which can be roughly divided into two categories:  
(1) data-driven methods that utilize outlier exposure to let the net-
work learn OOD features in a supervised way25; and (2) training-driven  
methods that are based on the source data without outliers, using 
source data to train the network for effective ID representations to 
distinguish OOD samples26. These methods have been widely high-
lighted in the fields of computer vision, speech recognition and natural  
language processing, but they experience serious performance degra-
dation when applied to fine-grained recognition tasks27. As the task of 
anomalous diffusion recognition lacks natural outliers (we can hardly 
judge whether the collected trajectories are OOD) and is inherently 
fine-grained (the associated random walk patterns are complex), it 
is challenging for both data- and training-driven methods to learn 
effective OOD features and ID representations for OOD dynamics 
detection. Moreover, as researchers generally expect that methods 
for distinguishing OOD dynamics will not worsen the performance 
of anomalous diffusion recognition, it is crucial to establish compre-
hensive evaluations for OOD dynamics detection and set up a baseline 
for solutions.

In this work, we developed a general evaluation framework and a 
powerful baseline method for OOD dynamics detection, identifying 
opportunities to achieve reliable deep learning in anomalous diffusion. 
Our innovative framework and method is adaptable for dynamics in 
real-world scenarios, broadening its applicability in practical research 
contexts. The proposed method integrates three key perspectives:  
data augmentation, training regularization and confidence compu-
tation, which can improve the performance of deep learning in both 
accurate anomalous diffusion recognition and effective OOD dynamics 
detection. For experimental observations with unknown distributions, 
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generated for recognizing anomalous diffusion with OOD dynamics. 
All trajectories in the benchmark are simulated with: dimension m = 2; 
length w = 50; and signal-to-noise ratio (SNR) ∈ {1,2,10}. We benchmark 
our method against other typical OOD-detection algorithms in anoma-
lous diffusion recognition (Supplementary Note 1), where the perfor-
mance of OOD detection is measured with the following metrics: the 
area under the receiver operating characteristic curve (AUROC), and 
the false positive rate of OOD examples when the true positive rate of 
ID examples is 95% (FPR95). Among ten scenarios for OOD dynamics 
detection (Fig. 2a), our method achieves the best metrics (the highest 
AUROC and the lowest FPR95) in six of them, and the top two rankings 
in AUROC in two of the remaining four scenarios. Considering the ID 
recognition, our method only slightly decreases the prediction of the 
anomalous exponent in A.C.L.S while improving the performance in 
all other cases (Fig. 2b and Supplementary Fig. 3). Benchmark results 

demonstrate the superiority of our method for enabling deep learning 
with better performance in both OOD dynamics detection and ID 
anomalous diffusion recognition (Supplementary Note 2).

To further validate the efficacy of our method on real-world data 
(Fig. 2c,d), we apply it to experimental single-particle tracking (SPT) 
data of nicotinic acetylcholine (nAch) receptors, which are reported 
to be formulated as a TSM33. Our method with the network trained on 
A.C.F.L.S detects the SPT data as OOD with metrics that closely align 
with the simulated TSM trajectories, highlighting the robustness of 
our method for real-world OOD trajectories (Fig. 2e). Furthermore, 
the previously considered sub-diffusive (α < 1) FBM behavior of the 
fluorescent bead in dextran solutions is reassessed. Based on the net-
work trained on A.C.F.L.S (FBM is in the source domain), our method 
identifies this diffusion as FBM with a mean anomalous exponent of 
0.78 at a probability of 73.86%, validating that the experimental data 
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Fig. 1 | OOD dynamics detection for anomalous diffusion recognition.  
a, Schematic representation of deep learning for anomalous diffusion 
recognition. The network is trained on simulated trajectories generated from 
theoretically established diffusion models (for example, ATTM, CTRW, FBM, LW, 
SBM) with specific anomalous exponent α, and is tested on real-world observed 
trajectories with unknown dynamics. The potential distribution shift between 
the dynamics of simulated and real-world trajectories can lead to unreliable 
deep-learning predictions. The color code of the trajectories represents time.  
b, Illustration of ID and OOD dynamics. Reliable deep learning is expected to 
effectively recognize ID dynamics as well as detect OOD dynamics. Parameter n in 
TSM represents the number of state jumps, whereas θ in OU represents the decay 

rate. c, Training procedure for our OOD dynamics detection. Data augmentation 
broadens the training distribution by introducing outliers from the source  
data using a specialized mix-up strategy. During parameter updating, the loss 
function for outlier exposure ℒoe and L2-norm loss function ℒrgl  regularize  
the network to learn OOD features and achieve MAP parameter estimation.  
d, The inference procedure for our OOD dynamics detection. The Laplace 
approximation on the last layer for classification turns the MAP-trained classifier 
(the weights of the classifier’s last layer are denoted WL) into a BNN in a post-hoc 
manner. The MAP predictions with BNN-based confidence scores SBNN below the 
threshold γ will be detected as OOD dynamics by the detector GBNN.
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conform to the description in the literature (FBM with an averaged 
α = 0.82)36. We then benchmark OOD dynamics detection on the dataset 
(A.C.L.S–diffusion in dextran solutions) and our method ranks first 
with AUROC/FPR95 of 0.94/0.31 (Fig. 2f). These results demonstrate 
the effectiveness of our method in identifying realistic diffusion types 
not included in the source domain. Moreover, deep learning with our 

method provides further evidence supporting the interpretation of 
specific motor behaviors.

Enhancement for OOD dynamics detection
The quality of the datasets is vital for the ultimate performance of 
deep learning. The reliability of deep learning in anomalous diffusion 
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Fig. 2 | Results of OOD dynamics detection. a, Benchmark for OOD dynamics 
detection. All OOD detection methods are evaluated in the same (ID–OOD) 
datasets with metrics of AUROC and FPR95. The datasets include (A.C.F.L.S–DBM),  
(A.C.F.L.S–TSM), (A.C.F.L.S–CBM), (A.C.F.L.S–SINAI), (A.C.F.L.S–OU),  
(C.F.L.S–ATTM), (A.F.L.S–CTRW), (A.C.L.S–FBM), (A.C.F.S–LW) and (A.C.F.L–SBM),  
where A.C.F.L.S represents the ID dataset with dynamics ∈{ATTM, CTRW, FBM, 
LW, SBM}. The other methods used in the benchmark (MSP, Odin, Energy,  
MA, Logit) are explained in Supplementary Note 1. b, The ability of our method 
to recognize ID anomalous diffusion compared with a baseline employing a 
normal training objective on the basis of the source data and cross-entropy. The 
F1-score of anomalous diffusion classification and MAE of anomalous exponent 

regression are used as metrics for ID recognition. c,d, Schematic representation 
of experimental SPT data. The SPT data for the nAch receptors (c) are acquired 
from the public dataset, whereas the SPT data of fluorescent beads in dextran 
solutions (d) are acquired from our home-built SPT microscopy (Supplementary 
Fig. 4). e, The ability of our method to detect OOD dynamics across data pairs, 
including (A.C.F.L.S–SPT data of nAch receptors) and (A.C.F.L.S–TSM). The 
confusion matrix shows the classifier’s output for the SPT data and TSMs.  
f, Comparative benchmark for detecting SPT data of fluorescent beads in dextran 
solutions, where the network is trained on A.C.L.S. The confusion matrix shows 
the classifier’s output for the free diffusion in dextran solutions, where the 
classifier is trained on A.C.F.L.S.
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is therefore closely related to the observation system, for which the 
spatiotemporal resolution and photon count play a crucial role. A 
higher spatiotemporal resolution means more points observed per 
unit time, whereas the photon count determines the efficiency and 
accuracy of the trajectory extraction. As the impacts can be approxi-
mately mapped to the length and signal-to-noise ratio (SNR) of the 
simulated trajectories, we further evaluate the relationship between 
our method and the observation system based on the simulation.  
For ID recognition, our method shows improved accuracy with increas-
ing length and SNR, which is consistent with conventional expectations 
(Fig. 3a,b). We conduct further experiments on the OOD dynamics that 
is effectively detected in the benchmark. As the length increases, the 
AUROC performance improves in all cases and FPR95 performance  
only declines when detecting OOD CBMs and ATTMs (Fig. 3c,d).  
With higher SNRs, only OOD DBMs and SINAIs experience slight 
declines in AUROC and FPR95, respectively (Fig. 3e,f). Thus, at least 
one metric (AUROC or FPR95) improves in all scenarios. Furthermore, 
along with high-quality data, the metrics achieve relatively high 

values (averaged AUROC/FPR95 = 0.85/0.54 for 100-point length and 
SNR = 10), confir ming the importance of implementing reliable deep 
learning in trustworthy dynamics analysis with the enhancement of 
observation systems.

Detection for certain OOD dynamics (OU, CTRW, LW) remains inef-
fective (AUROC < 0.5) even with improved data quality (Supplementary 
Fig. 5), where inference based on the output layer hardly distinguishes 
them. However, as shown in Fig. 3g–i, these OOD dynamics may exhibit 
distinct distribution in the feature space of specific hidden layers. We 
thus modify our confidence computation part by enclosing the feature 
vectors of ID dynamics within a hypersphere, and design the OOD 
detector Gdis on the basis of the distance between the input’s feature 
vector and the hypersphere’s center (see the ‘Confidence computa-
tion’ section in the Methods). Using Gdis on the basis of the last CNN 
layer, detection for OOD OUs and CTRWs achieves AUROC/FPR95 
of 0.96/0.07 and 0.81/0.72, respectively (Supplementary Fig. 6). For 
OOD Lévy walks, AUROC/FPR95 = 0.69/0.84, where Gdis is based on 
the last transformer layer. As various feature layers possess distinct 
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perception capabilities for OOD dynamics, the results demonstrate  
that our method is flexible and not inherently ineffective against  
specific OOD dynamics.

OOD detection allows for reliable dynamic interpretation
Employing deep learning without OOD detection for diffusion analysis 
may engender misinterpretations of the observed phenomena. To 
evaluate the reliability of our method for deep-learning-based dynamic 
interpretation, we conduct experiments showing what will happen 
when feeding OOD into the network, which is trained for the task of 
anomalous diffusion model classification and exponent regression. 
In-distribution models are typically expected to exhibit higher scores 
than OOD models, thus reducing predictions that are misrepresenta-
tive. It is noteworthy that the network inevitably outputs incorrect 
models for OOD inputs and we can assess the risk of erroneous inter-
pretations by measuring the deviation of the predicted anomalous 
exponent from the ground-truth value. In the subsequent analysis, 
we categorize OOD models on the basis of their detection efficacy, 
which can be divided into OOD models with effective and ineffective 
detection.

OOD models with effective detection. When taking ATTM, FBM or 
SBM as the OOD model, the network using our method effectively 
identifies such models as OOD, as evidenced by their lower mean 
confidence scores compared with their corresponding ID models 
(C.F.L.S, A.C.L.S, A.C.F.L) (Fig. 4c–e). For OOD ATTMs, the mean  
absolute error (MAE) for α prediction on ID models is 0.19, whereas  
it is 0.49 for OOD ATTMs (Fig. 4b). There is a large number of sub-
diffusive OOD ATTMs that are incorrectly predicted as superdiffu-
sive (α > 1) dynamics (Fig. 4a). For OOD FBMs, as SBM and ATTM are  
compatible with non-ergodic behavior22, a risky scenario can be 
observed in which most ergodic OOD FBMs are predicted as SBM 
and ATTM when α approaches 1 (Fig. 4d). For OOD SBMs, a substantial 
number of superdiffusive OOD SBMs are predicted as subdiffusive, 
and the MAE for α prediction is 0.28 lower than that of ID models 
(Fig. 4a,b). Considering that ATTMs, FBMs and SBMs with α = 1 con-
verge to standard Brownian motion, their low confidence scores 
effectively prevent normal diffusion from being misidentified as 
specific anomalous diffusion (Supplementary Note 4). Overall, these 
findings underscore the severe risks of misinterpretations if such 
OOD dynamics is not distinguished, highlighting the importance of 
our effective detection.

OOD models with ineffective detection. When the OOD model is 
CTRW or LW, the mean confidence score is close to that of their cor-
responding ID models (A.F.L.S or A.C.F.S), indicating limited detec-
tion capability with our method (Fig. 4f,g). However, the majority of 
subdiffusive OOD CTRWs and superdiffusive OOD LWs are accurately 
identified as subdiffusion and superdiffusion, respectively (Fig. 4a). 
As depicted in Fig. 4b, the prediction of α for OOD CTRWs and LWs 
shows improved performance compared with other OOD models 
with effective detection. Notably, OOD CTRWs achieve an even lower 
MAE than the ID models (A.F.L.S). Furthermore, subdiffusive OOD 
CTRWs tend to be identified as subdiffusive FBMs when α → 0, and 
as ATTMs when α → 1 (Fig. 4f). These identifications are understand-
able considering the fact that CTRW without jumps corresponds to 
an FBM with α = 0, and both CTRW and ATTM exhibit hidden waiting 
times23. Regarding OOD LWs, most are predicted to be superdiffu-
sive FBMs (Fig. 4g), which inherently resembles LWs with non-local, 
scale-free diffusion properties, leading to hyperballistic behavior 
over long timescales37. Hence, notwithstanding the impediments 
of our method in detecting such OOD models, their high confidence 
scores signify relatively low-risk misinterpretations, given that the 
predictions adequately capture the dynamic characteristics to a 
certain extent.

OOD dynamics detection in experimental observation. To substan-
tiate our simulation-based findings, we extend our OOD dynamics 
detection to an experimental scenario involving the active endocytosis 
of silver nanoparticles. Past studies have indicated that the major-
ity of endocytosed metal nanoparticles exhibit a pearl-on-a-string 
motion, characterized by a combination of random and linear walk 
patterns38. This motion model serves to represent the transportation 
facilitated by endocytic vesicles and motor proteins. To analyze the 
endocytosed silver nanoparticle trajectory, we divide the observed 
continuous, long trajectory into 320 non-overlapping trajectories, 
each containing 50 data points. Deep learning in conjunction with our 
OOD dynamics detection is then used for further recognition and the 
network is trained on A.C.F.L.S without the pearl-on-a-string motion. 
Results show that 305 trajectories are identified as superdiffusive FBM 
(Fig. 4j), whereas 12 are detected as OOD (Fig. 4h,i). As superdiffusive 
FBM is proven to represent a strong trend in persistent long-range 
correlations of particle movements11,39, it aligns well with the linear 
walk pattern in pearl-on-a-string motion. Furthermore, the superdif-
fusive FBM is widely used to model the movement of cellular cargoes 
actively transported by motor proteins40, indicating the fact that motor 
proteins promote the transport of the silver nanoparticle mediated by 
endocytic vesicles. Therefore, despite the potential distribution shift 
from the source domain, the deep-learning predictions can remain 
low-risk and trustworthy for representing experimental trajectories 
identified as ID by our method. Meanwhile, during the detected peri-
ods of OOD dynamics, there are abrupt drops in confidence compared 
with the adjacent moments (Fig. 4i). This indicates that the dynamics 
of the endocytosed silver nanoparticle may undergo unknown altera-
tions, potentially related to free or confined diffusion discussed in 
previous research38,41. Given the prominence of abnormal behaviors in 
research, our method can serve as a valuable warning system for such 
behaviors, preventing them from being falsely identified or ignored 
by deep learning.

Discussion
Deep-learning-based methods for anomalous diffusion have demon-
strated advantages in accuracy; however, such advantages are confined 
to ID trajectories. Our work extends OOD detection to deep learning 
for anomalous diffusion and provides a general framework for evalua-
tion. Benchmark results demonstrate the effectiveness of our method 
in both OOD dynamics detection and ID recognition. Enhanced spa-
tiotemporal resolution and increased photon counts in observation 
systems are expected to further boost performance. However, it can 
be observed that certain OOD dynamics are even more difficult to 
detect (Fig. 3d,e), indicating potential overfitting to features opti-
mized for ID recognition. This phenomenon underscores the need 
for regularization methods designed specifically for OOD dynamics 
detection. Furthermore, deep learning with our method successfully 
detects high-risk OOD dynamics, preventing inappropriate appli-
cations of anomalous diffusion. The detected samples can serve as 
valuable empirical evidence for mathematicians and physicists in for-
mulating novel dynamics. For identified ID dynamics, predictions will 
exhibit characteristics similar to their actual properties. Considering  
the fact that real-world data rarely follow established models exactly, 
this capability of deep learning with OOD dynamics detection car-
ries important implications for practical dynamics analysis. Further-
more, as the undetected OOD dynamics exhibits similarities with the  
predicted model, we can potentially use the failures of deep learn-
ing as an effective tool to identify where human modeling should  
delve deeper to uncover connections among qualitatively distinct 
diffusion models.

As the prevalence of large models with extensive training samples 
grows, the importance of OOD detection in the routine AI applications 
seems to wane. However, our work highlights its critical value in anoma-
lous diffusion recognition. On one hand, achieving a comprehensive 
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Fig. 4 | Analysis for OOD dynamics detection. a, Probability distribution of the 
predicted (αp) versus ground-truth anomalous diffusion exponent (αGT) for OOD 
ATTM, FBM, SBM, CTRW and LW detection. b, Mean absolute error of anomalous 
exponent regression across different OOD models (ATTM, FBM, SBM, CTRW, 
LW) and their corresponding ID models (C.F.L.S, A.C.L.S, A.C.F.L, A.F.L.S, A.C.F.S). 
One can infer the prediction risk of different OOD models, where the predictions 
for OOD CTRWs and SBMs exhibit the lowest and highest risks, respectively. 
c–g, Confidence scores and model predictions for OOD ATTMs (c), FBMs (d), 
SBMs (e), CTRWs (f) and Lévy walks (g) across different ground-truth anomalous 
exponents αGT. For the box plots showing confidence scores, n = 150 independent 
simulations were conducted for each box, with corresponding data points 

overlaid. Middle line, median; box edges, 25th and 75th percentiles; whiskers, 
range within mean ± s.d. The dashed lines represent the mean confidence of 
their corresponding ID models. h,i, Performance of our method in analyzing 
experimental SPT data of the endocytosed silver nanoparticles. The SPT data 
(h) are 3D and the network is trained on ID models of A.C.F.L.S. The trajectory 
segments corresponding to the green areas are detected as OOD. The dashed 
line in the confidence performance (i) represents the confidence threshold γ 
for OOD detection (details for the confidence threshold selection are shown 
in Supplementary Note 3). j, Distribution of predicted anomalous diffusion 
exponents αp and classified models for trajectories identified as ID by our 
method.
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enumeration of the motion patterns is an elusive goal. Hence, we need 
continually strive to derive new patterns of motion from empirical 
observations. On the other hand, the consequences of misidentifying 
dynamics are severe, potentially leading researchers to mischaracter-
ize the underlying truths of their observations. Although the poten-
tial value of OOD dynamics detection is substantial, our benchmark 
reveals that no single OOD detection methodology reigns supreme in 
all (ID–OOD) cases, indicating substantial opportunities for enhance-
ment. The benchmark currently focuses on fixed-length trajectories. 
However, addressing trajectories of varying lengths will introduce 
additional challenges. As shorter ID trajectories are prone to incor-
rect OOD dynamics detection (Supplementary Note 5), there is a great 
demand for reliable detection of single observable across time42. Fur-
thermore, although ergodicity breaking in certain anomalous diffu-
sion processes poses serious limitations for classical statistics-based 
approaches22, deep learning with OOD dynamics detection has shown 
robust performance (Supplementary Note 6). We therefore believe 
that OOD dynamics detection will witness a resurgence in the future. 
With more high-performance methods for OOD dynamics detection, 
deep-learning-driven identification of anomalous diffusion is poised  
to be a reliable research tool to precisely identify and explore the under-
lying connections among complex processes.

Methods
Theoretical models
All simulated dynamics used in our work are generated by the follow-
ing models.

ATTM. Annealed transient time motion features a kind of combined 
normal diffusion whose diffusion coefficient D varies in time. Assuming 
that the nth normal diffusion state is Dn and the duration is τn, the  
simulation samples Dn and τn from distribution P (D) ∼ Dσ−1 (with σ > 0) 
and P (τ) ∼ δ (τ − D−γ) (with σ < γ < σ + 1), respectively. Such generated 
trajectories of ATTM have been verified belong to anomalous sub-
diffusion with α = σ/γ.

CTRW. Continuous-time random walks is one of the most popular 
mathematical models in dynamic analysis, of which both the waiting 
time τ and spatial displacement ∆x of each step are stochastic and 
independent. In our case, we consider τ follows a power-law distri-
bution ψ (τ) ∼ τ−1−σ  and ∆x is sampled from a Gaussian distribution 
N (0, √D). This simulation of CTRW features anomalous subdiffusion 
with α = σ, (0 < σ < 1).

FBM. As a classic random process, FBM emerges as a powerful tool for 
modeling a host of natural time series, which is the only self-similar 
Gaussian process with stationary increments. Unlike Brownian motion, 
the increments of FBM are not pure Gaussian noise, but fractional 
Gaussian noise (fGn), which is given by

⟨ξfGn (t) ξfGn (t + τ)⟩ = α (α − 1)Kατ α−2, (1)

where α is the anomalous exponent related to the Hurst exponent H, 
commonly used in the FBM literature via α = 2H, (0 < H < 1), and Kα is 
the generalized diffusion constant.

LW. Lévy walks is a special CTRW that features anomalous superdiffu-
sion by introducing a functional dependence between waiting times τ 
and spatial displacements ∆x. For the simulation, τ follows the same 
distribution as CTRW, with ψ (τ) ∼ τ−1−σ ; furthermore, the coupling 
between ∆x and τ is Ψ (Δx, τ) = 1

2
δ(Δx − vτ)ψ(τ), where v is the velocity.  

As a result, LW corresponds to anomalous superdiffuion with

α = {
2 if 0 < σ < 1

3 − σ if 1 < σ < 2
(2)

SBM. Scaled Brownian motion is a popular model based on the time- 
dependent diffusivity K(t), which can be described by the Langevin 
equation with the white, zero mean Gaussian noise ξ(t) as follows

dx (t)
dt

= √2K (t)ξ (t) , (3)

where K(t) has a power-law dependence K (t) = αKαt α−1 . The MSD  
can be calculated by a set of tracers and this ensemble-averaged  
MSD (EA-MSD) is expected to converge to the true value. For SBM,  
the corresponding EA-MSD is ⟨x2 (t)⟩ ≃ Kαt α (0 < α ≤ 2).

DBM. Directed Brownian motion is a dynamic model used to  
describe active transport. It can be understood as standard Brownian  
motion (with diffusion coefficient D) with linear drift (with constant 
velocity v), whose EA-MSD follows ⟨x2 (t)⟩ ≃ 2Dt + (vt)2.

TSM. The TSM combines two types of diffusion: free diffusion state 
S1 (standard Brownian motion Wt) and obstructed diffusion state S2  
(in which Brownian motion occurs within a confined region [−L, L]  
and can become immobilized at the boundaries), based on the switch-
ing diffusion concept, which is established for the translational diffu-
sion of the nicotinic acetylcholine receptor at the plasma membrane32. 
For the simulation, the number of state jumps is sampled from a uni-
form distribution U(0,5), and the TSM is given by

x(t) = {
x (t − 1) + ΔWt if S1 or (S2 and |x(t − 1) + ΔWt| < L)

x (t − 1) if S2 and |x(t − 1) + ΔWt| ≥ L.
(4)

CBM. As several research studies have found that the individual 
real-world trajectory sometimes shifts to another diffusion model 
when the external environment changes, CBM is presented to feature 
such trajectories combined with two diffusion models (within ATTM, 
CTRW, FBM, LW and SBM). In our case, the change point between dif-
fusion regimes is sampled from the uniform distribution U(5, n – 5), 
where n is the length of the trajectory.

SINAI. SINAI is a prominent representative of logarithmic time- 
evolution random walk, which is often associated with systems with 
irregular or discontinuous potential energy landscapes. In terms  
of simulation, it can be generated in the same way as CTRW by  
using a different waiting time probability density function in the form 
ψ (τ) ∼ 1/ (τlog1+γτ), leading to the EA-MSD ⟨x2 (t)⟩ ≃ logγt . For γ = 4,  
simulated trajectories share the same behavior and the scale of  
MSD as those of SINAI11.

The OU process. The OU process is a Gaussian, continuous-time  
stochastic process with exponentially decaying autocorrelations,  
and is widely used to model the behavior of systems subject to  
random fluctuations. The differential equation followed by the OU is 
given by

dx (t) = −θx (t)dt + σdWt, (θ,σ > 0) , (5)

where Wt is the standard Brownian motion, σ2 is the variation of Wt,  
and θ is the decay rate. In our simulation, σ = 1 and θ ~ U(0, 2).

Deep learning for anomalous diffusion recognition and OOD 
detection
Network architecture. Short trajectories are most common in anoma-
lous diffusion recognition because of the limited photostability and 
brightness of a typical optical microscopic system. As convolutional 
transformers have been proven to be superior in short trajectory 
recognition30, we choose this architecture to complete the diffusion 
recognition task. The input is the trajectory X ∈ ℝw×m = [ ⃗x1; ⃗x2;… ; ⃗xw],  
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where w and m are the length and dimension of the trajectory, respec-
tively. The analysis of anomalous diffusion always includes the  
model classification and exponent regression, so that multitask  
learning is suitable for deployment. Besides, the performance of  
anomalous exponent regression for OOD samples can serve as an 
effective metric to evaluate the risk of OOD dynamics. The anomalous 
diffusion model and exponent are therefore predicted by the network 
simultaneously in our work. The network consists of three main  
modules: convolutional, self-attention and linear modules. The  
convolutional module follows the ResNet43 architecture and uses  
1D convolution kernels to extract features. The extracted features 
undergo further processing via a self-attention module with six trans-
former encoders, enabling the network to identify long-range correla-
tions within the data. Finally, there are two fully connected layers  
in the linear module for anomalous diffusion model classification  
and exponent regression, respectively (see Supplementary Note 7  
for details).

Data augmentation. To make the network learn OOD features, we 
propose a general data augmentation method for trajectory data based 
on the theory of Mixup28. This module expands training distribution 
at the data level and will enhance the network’s OOD dynamics detec-
tion capabilities (Supplementary Note 2). Specifically, assuming that 
the source data Ds = {(X1, 1) , (X2, 2)… (XN,N)} has a total of N categories 
of anomalous diffusion trajectories, two types of the generated outliers 
can be expressed as

X̃1(t) = λXi(t) + (1 − λ)Xj(t), (6)

X̃2(t) = {
Xi (t) if 0 < t < λw

Xj (t) if λw ≤ t ≤ w,
(7)

where i ≠ j and λ ∼ beta(β, β). Thus, the expanded source data  
with outliers is De = {(X1, 1) , (X2, 2)… (XN,N) , (X̃1,N + 1) , (X̃2,N + 1)}  and  
the N-classification task becomes an N + 1 classification task. For both 
training and testing, a Z-score normalization is applied to preprocess 
each input trajectory to alleviate the effect of the diffusion coefficient 
on anomalous diffusion recognition. In the actual deployment of  
our work, the training dataset Dtrain has the same distribution as De,  
with 30,000 samples for each category (β = 25).

Training regularization. The training dataset Dtrain has N + 1 categories 
after data augmentation. Assuming that 𝒟𝒟s is the distribution of source 
data, there are N categories and a total of K trajectories in 𝒟𝒟s. The rest 
category represents the generated outliers. We develop a training 
objective that ensures the classification performance in 𝒟𝒟s and uses 
outliers to enhance the boundary sense of 𝒟𝒟s. The combination of this 
module and our data augmentation allows the network to improve 
OOD detection capabilities while maintaining or even enhancing ID 
recognition performance (Supplementary Note 2). The training objec-
tive ℒ is a sum of three terms: regression (ℒreg), classification (ℒcls) and 
L2-norm (ℒrgl) losses,

ℒ=ρ1ℒreg + ρ2ℒcls + ℒrgl. (8)

The regression loss ℒreg computes the simple mean-squared error 
(MSE) between the predicted and true anomalous exponents. As there 
are no ground-truth anomalous exponents for the generated outliers, 
we ignore the contribution of outliers to the MSE during the training 
process by mixing outliers into Dtrain and computing ℒreg as follows

ℒreg =
K

∑
i=1

(αGT,i
source − αpred,i

source)
2
, (9)

where αGT
source  and αpred

source  are the ground-truth and predicted ano-
malous exponent of Dtrain in 𝒟𝒟s, respectively. The classification loss  
ℒcls consists of cross-entropy loss ℒce for each of expanded training 
data De and outlier exposure loss ℒoe for regularization,

ℒcls = ℒce + ρ3ℒoe, (10)

where ℒce is a function of the true classification labels and the predicted 
probability map. With data augmentation, the task changes from  
N classification into N + 1 classification and ℒce is given by

ℒce = −
n

∑
i=1
p (xi) log (q (xi)) , (11)

where p (xi) ,q (xi) ∈ ℝN+1 represents the true and predicted distribu-
tion of each input xi from Dtrain, respectively. The purpose of ℒoe is to  
allow the outlier to be isolated from 𝒟𝒟s  by the network as much as  
possible, even if it is misclassified into 𝒟𝒟s, enabling the network to 
detect OOD samples in a more fine-grained manner:

ℒoe = λ
m

∑
j=1
p (x̃j) log (q (x̃j)) , (12)

where p (x̃j) ,q (x̃j) ∈ ℝN+1 represent the true and predicted distribu-
tion of each outlier x̃j, respectively; λ is the (N + 1)th element of the 
softmax vector, corresponding to the probability that x̃j is classified 
as outlier.

The L2-norm loss is formulated as ℒrgl = ||W||2 , where W is the 
weight matrix of all layers in the network. In this work, the hyper-
parameters ρ1, ρ2, ρ3 are set to 0.3, 0.7, 0.5, respectively. As accurate 
recognition of Dtrain in the source domain 𝒟𝒟s is the original task, the 
validation dataset Dvalid is sampled from 𝒟𝒟s, with 3,000 trajectories 
available for each category. For each training epoch, the network 
parameters with the highest classification performance on Dvalid  
are saved.

Confidence computation. We introduce Bayesian neural network to 
alleviate overconfidence for OOD dynamics; however, the implementa-
tion of BNN is always expensive to train and hard to scale to modern 
networks44. For simple and cost-efficient, yet competitive BNN,  
Kristiadi and colleagues proposed LLLA29, which has proven to  
capture network uncertainty effectively and is readily applicable to 
already-trained networks. In LLLA, one applies Laplace approximation 
post-hoc only on the last layer and the other layers retain the estimate 
of MAP, protecting the predictive performance of pre-trained networks 
while equipping networks with robust uncertainty estimates. Thus, 
the network trained with our data augmentation and regularization 
can be further deployed with BNN by simply using LLLA, which effec-
tively improves OOD dynamics detection (Supplementary Note 2). 
Specifically, we infer the weights of the last classification layer WL ∈ ℝk×d 
obey Gaussian distribution

p (WL|DS) =𝒩𝒩 (WL|WL,MAP,H
−1) , (13)

where k = N + 1 and d are the number of categories and parameters  
of the last classification layer, respectively; H ∈ ℝdk×dk  is the Hessian  
of the negative log-posterior − log (Ds|WL) with regard to WL at WL,MAP. 
This Hessian could be easily obtained via automatic differentiation  
and be formulated as H−1 ≈ V⊗ U  with Kronecker-factored Laplace 
approximation45. Assuming the input vector of the last layer is ϕ ∈ Rd  
and ϕT denotes its transpose, the distribution of the network output 
for classification ⃗fcls = WLϕ can be expressed as

p ( ⃗fcls|DS)=𝒩𝒩 ( ⃗fcls|WL,MAPϕ, (ϕTVϕ)U) . (14)

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-024-00703-7

Therefore, the probability that the network predicts the trajectory 
x⃗  belonging to the ith category is

p (y = i|x⃗,Ds) = ∫ softmax ( ⃗f, i)𝒩𝒩 ( ⃗f|WL,MAPϕ, (ϕTVϕ)U)d ⃗f, (15)

where p(y = N + 1) is the probability that x⃗  is recognized as  
the outlier. The confidence score with BNNs SBNN is defined as  
SBNN = max ( p ( y = 1) ,p ( y = 2) ,… ,p ( y = N)) and the BNNs-based detec-
tor GBNN is given as

GBNN = {
0 if SBNN(x⃗) < γ

1 if SBNN(x⃗) ≥ γ,
(16)

where γ is the confidence threshold and GBNN assigns label 0 for  
OOD dynamics and label 1 for ID dynamics. The full computation  
of SBNN is shown in Supplementary Algorithm 1. Moreover, a distance- 
based detector Gdis is proven to be effective in detecting OOD dyna-
mics that GBNN fails to identify, which can be expressed as

Gdis( ⃗x , ⃗α ,R2) = {
0 if ‖F(ϕn( ⃗x )) − ⃗α ‖2 > R2

1 if ‖F(ϕn( ⃗x )) − ⃗α ‖2 ≤ R2
, (17)

where ϕn (∙) is the nth layer output; α⃗  and R2 are parameters of the 
hypersphere trained from Ddis = {ϕn (x⃗i) , x⃗i ∈ Ds}  using SVDD46 with  
slack variable ξ and penalty constant C; F(∙) is a nonlinear mapping 
relationship given by the following optimization problem

min (R2 + C
n
∑
i=1
ξi)

s.t. ‖F(ϕn( ⃗x )) − ⃗α ‖2 ≤ R2 + ξi and ξi ≥ 0 ∀i.
(18)

where s.t. indicates subject to.

Assessment metrics
Given the expected improvements in both ID dynamics recognition  
and OOD dynamics detection, we utilize several metrics to evaluate  
and compare the performance of our method with others. These  
metrics include the MAE, F1-score, AUROC and FPR95.

MAE. The MAE is a frequently employed metric for evaluating regression 
tasks; it measures the average extent of deviation between the predic-
tions of the network and the desired outputs. We use the MAE to quantify 
the performance of the network in predicting anomalous exponents:

MAE = 1
M

M

∑
i=1

||αGT,i − αpred,i|| , (19)

where M is the number of trajectories in the test dataset, and αGT,i   
and αpred,i  represent the ground-truth and the predicted values of  
the anomalous exponent of the ith trajectory, respectively.

F1-score. The F1-score comprehensively considers both the precision 
and recall performance of the classification network and is equally 
applicable for multiclassification tasks. To mitigate potential bias 
caused by uneven proportions of dynamics categories in the dataset, 
we employ the micro-averaged F1-score in our study:

F1 =
2TPsource

2TPsource + FPsource + FNsource
, (20)

where TPsource, FPsource and FNsource represent true positives, false posi-
tives and false negatives, respectively, calculated over the test dataset 
in 𝒟𝒟s. The closer the F1-score value is to 1, the better the network’s  
classification performance is when faced with ID dynamics.

AUROC. AUROC is the area under the ROC curve, which is a compre-
hensive measure of the network’s ability to detect OOD samples. The  
ROC curve represents the false positive rate FPR = FP

FP+TN
 on the x-axis  

and the true positive rate TPR = TP
TP+FN

 on the y-axis, where OOD sam-

ples are considered positive and ID samples are negative; TP, FP and 
FN represent true positives, false positives and false negatives calcu-
lated over the whole dataset, respectively. The AUROC value ranges 
from 0 to 1, where 0.5 represents random OOD detection ability and  
1 represents perfect OOD detection ability.

FPR95. FPR95 is the value of FPR (represents the probability that the ID 
sample is incorrectly identified as OOD by the network) when the TPR 
(represents the probability that the OOD sample is correctly detected 
by the network) reaches 95%. A lower FPR95 value indicates the  
network’s better performance in detecting OOD dynamics.

Experimental data acquisition
In our work, we deal with three types of actual data: the dynamics 
of nicotinic acetylcholine receptors, fluorescent beads in dextran 
solutions and silver nanoparticles undergoing endocytosis. The tra-
jectories of nicotinic acetylcholine receptors come from the dataset 
published by Maizón et al. available at https://github.com/hectorbm/
DL_anomalous_diffusion (ref. 32). The procedure developed by Golan 
and Sherman47 was applied to filter out immobile trajectories.

The trajectories of fluorescent beads (BangsLab, FSDG002, 
FSSY002) in dextran solution and silver nanoparticles (Xfnano, 
103716) undergoing endocytosis were obtained using our home-built 
SPT system48,49. In the SPT system, we implement an active feedback 
tracking approach for real-time particle tracking (further details are 
elaborated in Supplementary Note 8). Briefly, we use the electro-optic 
deflector and tunable acoustic gradient lens to swiftly scan a 1 × 1 × 2 μm 
three-dimensional region surrounding the target particle. Position 
of the particle is then determined based on intensity measurements, 
subsequently enabling the piezoelectric device to actively track the 
trajectory of particle in real time.

The dextran solution is obtained by dissolving dextran (500 kDa, 
Sigma) in millipore water at concentrations of about 430 mg ml–1  
(30% w/w). The tracer beads were added from a predissolved solu-
tion, resulting in a typical concentration of about 2 pM. For SPT of 
the silver nanoparticle undergoing endocytosis, Hela cells were cul-
tured overnight in a confocal dish with Dulbecco’s Modified Eagle 
Medium containing 10% fetal bovine serum and 1% double penicillin/
streptomycin. Before tracking, cells were set on the ice for 5 min to 
inhibit the endocytosis. Silver NPs were diluted in DPBS to 10 μg ml–1 
and then incubated in the confocal dish on ice for 10 min and then 
washed twice with DPBS. During tracking, cells were kept in the 1 ml 
living cell buffer.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this work are available on Code 
Ocean at https://doi.org/10.24433/CO.6518632.v5 (ref. 50). Source data 
are provided with this paper.

Code availability
Our reproduction code and the relevant documentation are available 
on Code Ocean at https://doi.org/10.24433/CO.6518632.v5 (ref. 50).
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