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a b s t r a c t 

The existence of a scattering medium causes the degeneration of intensity and phase information, especially in 

biological imaging. The present techniques to address this challenge only focus on the reconstruction of intensity 

information, yet few attempts have tried to recover the phase information. We propose a method to simultane- 

ously predict both intensity and phase information from a speckle image employing a deep despeckle complex 

neural network (DespeckleNet). By combining the advantages of both the complex network and the generative ad- 

versarial network framework, our method enables the high contrast single-shot imaging of complicated biological 

samples through scattering media without labeling. Various experiments demonstrate the superior reconstruction 

and generalization performance of our method under multiple types of biological samples with different scatter- 

ing media. We also provide the real-time observation of living cellular activities without any contaminations or 

damages to the cells. Our method offers simple yet effective imaging through scattering media and paves the way 

for real-time unlabeled biological imaging. 
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. Introduction 

As one of the most challenging and practical research topics, imag-

ng through scattering media [ 1 , 2 ] receives more attention recently in

any fields, such as cloud tomography [3] , underwater imaging [4] ,

nd biomedical imaging [5] . In particular, the tissues and cells of most

rganisms exhibit heterogeneous refractive indices, which causes the

elative phase of the laser to be randomly scrambled and thus generates

peckle [6] . This limits the resolution of imaging as well as the depth of

bservation. Many techniques have made great achievements in imag-

ng through scattering media over the years, including optical coher-

nce tomography (OCT) [7] , wavefront shaping [8–11] , optical trans-

ission matrix [12–18] , and others. However, the spatial distribution

f the speckle is a complicated function of the microscopic arrangement

f the scattering media and the wavefront of the incident field. And it

s difficult to provide a wide field of view (FOV) due to the memory

ffect. OCT and wavefront shaping techniques demand a sophisticated

ptical design and hardware, which is hard to deploy in practice. In re-
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ent years, deep learning (DL) has shown favorable achievements in the

eld of imaging through scattering media [19–28] . Li built a "one to

ll" model based on the UNet backbone, which can learn statistical in-

ormation about similar scattering media with different microstructures

nd extract statistical invariance of the speckle [23] . However, previous

ork using deep learning for de-speckle has only reconstructed binary

mages or simple handwritten digits, rather than complex grayscale sam-

les in real biological microscope scenes. 

Meanwhile, Researchers have also developed the reconstruction of

hase information through scattering media [29] . Phase information re-

ects the cellular structures and plays an important role in the imaging

f transparent samples. Conventional bright-field microscopy needs to

tain the sample or use fluorescent labels to show the structure [30] ,

hich may affect the normal vital movement of cells [ 31 , 32 ]. In con-

rast, phase imaging is a label-free microscopic imaging method that

nables the imaging of transparent samples by attaining phase infor-

ation of different components of cells. A well-known phase imaging

echnique is phase-contrast microscopy proposed by Zernike. Phase-

ontrast microscopy uses interference between the scattering and non-
g) . 
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Fig. 1. Workflow overview. (a) Schematic view of the experimental setup. The laser illuminates the sample through diffusers, and the speckle information is recorded 

by the camera. (b) The intensity images of the sample without scattering on different focal planes are used to generate phase images employing the TIE algorithm. The 

in-focus intensity image without scattering concatenates the phase image as the ground truth of the proposed network. (c) The overall structure of the DespeckleNet. 

The network is capable of simultaneously recovering both intensity and phase information from one speckle image. (d) Multiple kinds of diffusers, including thin 

tape, Petri dish, and tissue, are used to verify the performance of our method. (e) Multiple kinds of diffusers, including breast cancer cells, nasopharyngeal cancer 

cells, living Hela cells, and breast cancer tissue, are used to demonstrate the generality of our method. (f) A long-time and real-time phase observation of living Hela 

cells. The unit of phase is radian (rad). 
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cattering light waves to convert the optical phase into high contrast

mage [33] . Nomarski further invented differential interference contrast

DIC) microscopy based on phase-contrast microscopy, which can dis-

lay a three-dimensional projection of the structure [34] . Both of these

ethods belong to qualitative phase imaging techniques. Quantitative

hase imaging techniques have made great progress in the biomedi-

al field recently, including the transport of intensity equation (TIE)

 35 , 36 ], digital holographic imaging [ 37 , 38 ], and tomographic phase

icroscopy [39–41] . The digital off-axis holography is the most widely

sed due to its high-quality phase reconstruction capability [ 42 , 43 ]. But

t requires the introduction of an additional reference light path and

oes not achieve high space bandwidth utilization. The crosstalk be-

ween the real image, zero-order and twin images may lead to blurring

nd artifacts when the space-bandwidth production required by off-axis

igital holographic is not satisfied [ 44 , 45 ]. Among these methods, the

IE technique can be easily deployed to conventional microscopy due to

he desirable property of simple acquisition manner, no reference beam,

nd no phase unwrapping. Furthermore, it also suits both coherent and

artially coherent illumination [46–48] . However, TIE usually requires

 series of images captured at different focal depths, which extends the

cquisition time and limits real-time observation of the dynamic pro-

ess. Although deep learning has made achievements in phase recovery

 49 , 50 ], all of these methods cannot be directly applied to the simulta-

eous reconstruction of intensity and phase in scattering problems. 

Previous studies indicate that there exists a functional relationship

etween the speckled image and the original sample [13] , and phase

nformation can also be inferred from the intensity distribution [51] .

n this paper, we developed a deep despeckle method to simultane-

usly predict the intensity and phase information of biological samples

hrough scattering media via a complex neural network (DespeckleNet).

 speckled image, generated by inserting a diffuser in the optical path, is

ed into our network and both intensity and phase are predicted as out-
 s  

2 
ut. The network is devised based on the generative adversarial network

GAN) framework [52–54] , and we obtain a resilient speckle decorrela-

ion for the intensity and phase with a wide range of statistical varia-

ions. So we can make high-quality object predictions with a completely

ifferent set of diffusers of the same class. Different from previous deep

earning-based despeckle works, we observe the biological sample us-

ng a microscope rather than a simulated object displayed by the spatial

ight modulator (SLM) [ 23 , 24 ], which is more difficult for the network

o reconstruct. We carry out experiments on both cells and tissue to

emonstrate the superior performance of our method. In addition, we

lso observe the real-time division process of unlabeled living Hela cells

sing quantitative phase imaging. Our solution is a single-shot imaging

ethod and can be applied in a variety of microscope systems without

roviding an additional sophisticated optical structure for despeckle or

hase reconstruction. Compared to typical holography - off-axis hologra-

hy, our solution can effectively eliminate the speckle and is not limited

y the space-bandwidth production of detector. 

. Methods 

.1. Overview of the workflow 

The overall experimental setup is depicted in Fig. 1 (a). The coher-

nt light source is modulated through the diffuser to illuminate the bi-

logical sample. Due to the optical roughness of the diffuser surface,

he image captured by the camera is mixed with the granular pattern.

ased on captured speckle image, both intensity and phase information

an be simultaneously recovered by our DespeckleNet, whose flowchart

s shown in Figs. 1 (b) and 1(c). To build the dataset for network train-

ng and testing, we replace the laser with an incoherent light source

o obtain a series of in-focus and out-of-focus sample images without

cattering. The in-focus image without scattering is the ground truth of
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ntensity. The ground truth of the phase component is obtained by TIE,

hich takes images from different focal planes as input to extract the

hase information (the detail please see supplement TIE algorithm). To

educe the computational complexity, each speckle image and the cor-

esponding ground truth are cropped into lots of smaller-sized patches

nd then fed into our model. The speckle pattern of each patch is dif-

erent even they come from the same diffuser. Our model learns the

tatistical invariance of the diffuser and can output high-quality recon-

tructions even for the speckle patterns that have not been seen during

raining. Experimentally, we verify the network performance with three

inds of diffusers, including thin tape, Petri dish, and tissue, as shown

n Fig. 1 (d). We also use four different biological samples, containing

reast cancer cells, nasopharyngeal cancer cells, living Hela cells, and

reast cancer tissue, to demonstrate the generality of our method, as

hown in Fig. 1 (e). In Fig. 1 (f), we show real-time quantitative phase

bservation of living Hela cells without labeling or staining over a long

ime, which proves that our method can achieve single-shot unlabeled

maging through scattering media. Note that the units of all the recon-

tructed phases in the text are radians (rad). 

.2. The architecture of the DespeckleNet 

The architecture of the DespeckleNet is shown in Fig. 2 . Our network

ealizes an inverse process of the physical system. It inputs a speckle in-

ensity image and outputs high-quality predictions of both phase and

ntensity of the sample, which corresponds to the components of the co-

erent transfer function. In our implementation, the DespeckleNet is de-

igned following the generative adversarial network (GAN) framework.

he GAN is composed of a generator, as shown in Figs. 2 (a)-(d), and a

iscriminator, as shown in Fig. 2 (e). The generator generates the inten-

ity and phase, and the discriminator judges whether the outputs are

eal or fake. Specifically, we first extract the features of the input im-

ge through the feature extractor, as indicated in Fig. 2 (a). Next, we

dd a translate module to cope with the influence of speckle by stack-

ng real-valued and complex residual blocks sequentially, as indicated

n Fig. 2 (b). The operation of the modified complex residual block is

hown in Fig. 2 (f), which decouples the intensity and phase information

rom extracted features. Compared with the real-valued convolution, the

omplex convolution is more consistent with the optical complex field

ropagation model. Then we employ two decoders to reconstruct the

ntensity and phase images, as shown in Figs. 2 (c) and 2(d). The two

ecoders have the same structures except that the intensity branch has

n additional tanh activation function in the last layer to normalize the

utput. For the discriminator, we adopt the PatchGAN to perform dis-

rimination patch-wisely, which is beneficial for the reconstruction of

etails, as shown in Fig. 2 (e). 

Generative model. The backbone of our generative model is UNet,

hich was first proposed for medical image segmentation [55] . The gen-

rator contains four components, which are feature extractor, translate

odule, intensity, and phase reconstruction module, as shown in Fig. 2 .

he feature extractor consists of five consecutive convolution blocks.

ach convolution block contains a convolution layer with 4 × 4 kernel

ize, batch normalization layer, and leaky ReLU activation layer. After

ach convolution block, we double the number of channels and set the

onvolution stride to 2, which can downscale the feature map and ex-

and the receptive field. Since the formation of speckle results from the

onlinear weighted summation of different scattering mode microstruc-

ures within a certain receptive field, expanding the receptive field is

eneficial for the despeckle task. Our proposed feature translate mod-

le adopts five residual convolution blocks and four modified complex

esidual blocks rather than the common real-valued networks. Because

ight propagates in complex form, our module is more applicable in

he simultaneous recovery of both intensity and phase processes. The

xperiment results support this conclusion. Compared to conventional

omplex network [ 56 , 57 ], our complex residual blocks in the translate

odule are used for feature transformation with the same size, so the
3 
ooling layer is removed. The residual structure in the translate module

an speed up the convergence rate. 

Traditionally, given a complex-valued convolutional filter

 = W r + iW j and a complex input h = h r + ih i , where subscript 𝑟 rep-

esents the real part and 𝑖 represents the imaginary part, the complex

onvolution (CConv) is shown as: 

 ∗ ℎ = 

(
𝑊 𝑟 ∗ ℎ 𝑟 − 𝑊 𝑖 ∗ ℎ 𝑖 

)
+ 𝑖 

(
𝑊 𝑖 ∗ ℎ 𝑟 + 𝑊 𝑟 ∗ ℎ 𝑖 

)
, (1)

here ∗ denotes real-valued convolution operation. In our modified

omplex convolution, the input channels are divided into two groups,

tanding for real and imaginary features, respectively. The convolution

esults of these two groups are then fused by 1 × 1 convolution rather

han directly adding the real and the imaginary part. Next, we use a uni-

ersal activation function, Leaky ReLU, to realize nonlinear mapping.

he complex residual block ( CRB ) in our feature translate module is

efined as 

𝑅𝐵 ( ℎ ) = 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 

(
𝑐𝑜𝑛𝑣 1∗1 

(
𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 

(
𝑐𝑜𝑛𝑣 3∗3 ,𝑔𝑟𝑜𝑢𝑝 =2 ( ℎ ) 

)))
+ ℎ. 

(2) 

The feature map in the translate module has small lateral dimen-

ions (16 × 16) and a large number of channels (512), which can encode

ufficient information beneficial to the following task. Next, these fea-

ure maps go through the intensity reconstruction module, which con-

ains five consecutive transposed convolution layers (kernel size = 4 × 4,

tride = 2) followed by a tanh activation layer to normalize the output

rom -1 to 1. The information across different spatial scales is tun-

eled through the down-up paths by skip connections to preserve high-

requency information. Similar operations except the tanh activation are

pplied to the phase reconstruction to keep consistent with the absolute

alue of ground truth. 

Discriminative model. The conventional discriminative model con-

ists of a series of convolution layers, a global average pooling layer,

nd several fully connected layers. The last fully connected layer is fol-

owed by a sigmoid activation function whose output is the probability

f an input image being real or fake. The global average pooling layer

imits the discriminator to focus only on the overall content while ignor-

ng the fine-grained local features of the output. In contrast, the Patch-

AN architecture can pay more attention to the structure in local image

atches. Here, we build our discriminative model based on PatchGAN,

s this method showed excellent results for image translation task [58] .

he PatchGAN maps the input image into a N × N patch matrix M via

onvolution operation, and the value of M ij represents the probability

f being real for the corresponding patch. The final output of the dis-

riminator is the average of all the elements within matrix M . 

Loss function. We design our loss function as the combination of

he adversarial loss with L1 loss as the regularization terms. To ensure

he convergence, we alternatively train the discriminator and generator.

he loss function of the discriminator is formulated as: 

in 
𝐷 

𝐿 ( 𝐷; 𝐺 ) = − 𝑙 𝑜𝑔𝐷 ( 𝑦 ) − 𝑙 𝑜𝑔 [ 1 − 𝐷 ( 𝐺 ( 𝑥 ) ) ] , (3)

here G represents a fixed generator, and D represents the discrimina-

or to be updated, y = concat ( y I , y P ) is the concatenated ground truth of

ntensity and phase. The loss function of the generator is formulated as:

in 
𝐺 

𝐿 ( 𝐺; 𝐷 ) = − 𝑙 𝑜𝑔 ( 𝐷 ( 𝐺 ( 𝑥 ) ) ) + 𝛼
(
𝐿 1 ( 𝐺 ( 𝑥 ) , 𝑦 ) 

)
, (4)

here 𝛼 is the regularization hyper parameters, L 1 ( G ( x ) , y ) represents

he L1 loss between G ( x ) and y . The symbols D, G and y have the same

eaning as those in Eq. (3) . While the adversarial loss guides the gener-

tive model to map the speckle images into despeckle ones, the regular-

zation terms can speed up the convergence of our network and smooth

he training loss. Experimental results reveal that good performance can

e achieved when 𝛼 is set between 0.3 and 0.4. 
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Fig. 2. The architecture of the DespeckleNet. (a) The feature extractor learns the feature representation of the speckle image from the input. (b) The extracted 

features are refined by the translate module, composed of real-valued and complex residual blocks, for subsequent reconstruction and prediction. (c)-(d) The intensity 

reconstruction module and phase prediction module use the refined features to predict the intensity and phase image, respectively. (e) The PatchGAN discriminates 

whether the intensity-phase pair is the ground truth or the pseudo generated by the generative model. (f) The detailed structure of modified complex residual block 

in (b). It contains group convolution, group normalization, 1 × 1 convolution (channel fusion), instance normalization, and LeakyReLU layer. 
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.3. Metrics 

Following the numerical evaluation methods proposed in the pre-

ious papers, the mean structural similarity (SSIM) [59] , learned per-

eptual image patch similarity (LPIPS) [60] and normalized root mean

quare error (NRMSE) are used to evaluate the results of the despeckle

nd phase prediction. The values of the SSIM and NRMSE metrics are

etween 0 and 1. The higher SSIM and lower NRMSE values represent

 high-quality output result. NRMSE is a general objective evaluation

ndex in measuring image quality, while SSIM assures a high degree of

tructural consistency between output and ground truth. The SSIM is

efined as 

 𝑆 𝐼 𝑀 ( 𝑥 , 𝑦 ) = 

(
2 𝜇𝑥 𝜇𝑦 + 𝑐 1 

)(
2 𝜎𝑥𝑦 + 𝑐 2 

)
(
𝜇2 
𝑥 
+ 𝜇2 

𝑦 
+ 𝑐 1 

)(
𝜎2 
𝑥 
+ 𝜎2 

𝑦 
+ 𝑐 1 

) , (5)

here 𝜇x , 𝜇y are the averages of x, y, 𝜎x 
2 , 𝜎y 

2 are the variances of x,

, 𝜎xy is the covariance of x and y ; and c 1 , c 2 are the variables used
4 
o stabilize the division with a small denominator. We also use LPIPS,

 learning-based perceptual similarity metric, to measure the distance

n feature space, which is more consistent with human perception. The

PIPS is defined as 

 ( 𝑥, ̂𝑥 ) = 

𝐿 ∑
𝑙=1 

1 
𝐻 𝑙 𝑊 𝑙 

𝐻 𝑙 ,𝑊 𝑙 ∑
ℎ =1 ,𝑤 =1 

∥ 𝜔 𝑙 ⊙
(
𝑦 𝑙 
ℎ𝑤 

− �̂� 𝑙 
ℎ𝑤 

)
∥2 2 , (6)

here x, �̂� are the intensity (or phase) ground truth and output from

he DespeckleNet, and 𝑦 𝑙 , ̂𝑦 𝑙 ∈ ℝ 

𝐻𝑙 ×𝑊 𝑙 ×𝐶 are the corresponding l th layer

eatures extracted from pre-trained AlexNet, H l , W l , C l are the size of

eature map at l th layer, 𝜔 

𝑙 ∈ ℝ 

𝐶 𝑙 is real-valued scaling weight, and ⊙

epresents the Hardamard product operator. The number of feature lay-

rs L is set to 5. The lower LPIPS value means that the images are more

imilar to the ground truth in the aspect of human perception. 
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Fig. 3. The reconstructions via the DespeckleNet. Recovered intensity and phase of (a) nasopharyngeal carcinoma cells (C666-1) through thin tapes, (b) breast cancer 

cells (MDA-MB-231) through unstained tissue, (c) Hela cells through Petri dish, and (d) breast cancer tissue with HER2 through thin tapes, respectively. (e) Intensity 

and (f) phase profile along the corresponding line trace in (d). The speckle patterns used for testing are not previously seen by the network. Output: the output of 

DespeckleNet, GT: Ground truth. 
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.4. Data acquisition 

In our experiments, we image different types of cells and tissues

hrough different scattering media including thin tape, tissue, and Petri

ish. To obtain the ground truth for network training, we collect ± 2 μm,

 4 μm out-of-focus images, and an in-focus image. The in-focus image

s used as the ground truth of the intensity image, and the ground truth

f the phase image is calculated by the TIE algorithm using four out-of-

ocus and one in-focus intensity image. The input of the network is the

peckle image, which is obtained by illuminating the biological sample

hrough the diffuser using the laser. For each sample under a specific

iffuser, we collect 20 sets of images, which are then randomly cropped

nto about 2,000 512 × 512 patches for training, and about 200 patches

or testing. And we will re-collect 2000 patches as a training dataset

nd 200 patches as a testing dataset in the same way, when replacing
5 
he sample or diffuser types for experiments. The images in the testing

ataset are not used for training, which ensures that our network never

ees the speckle patterns before. Therefore, the datasets have the follow-

ng two characteristics. One is that each patch corresponds to a different

cattering pattern, which can test the robustness to the scattering modes.

nother is that our datasets consist of different samples, which can test

he generalization of the sample types. 

We design two scattering modes for data acquisition. In mode one,

he living Hela cells are imaged through a Petri dish, and the laser goes

hrough the diffuser (the plastic shell of the Petri dish) twice. In mode

wo, the breast cancer cells, nasopharyngeal carcinoma cells, and breast

ancer tissue with HER2 are imaged through thin tape and tissue section,

espectively, and the laser go through the diffuser (thin tape and tissue

ection) once. A 40 × /1.25NA objective is used to magnify the Hela

ells in mode one. A 40 × /0.65NA objective is employed for the cell
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Fig. 4. Morphological changes of living Hela cell during the division process. (a) Phase, intensity, and speckle profiles at different timestamps (see Visualization 1). 

(b) Phase variations with time of points A and B, indicated by red curve and blue curve, respectively. (c) Intensity variations with time. The red and blue solid curves 

represent the variations for points A + and B + in recovered intensity images. 
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amples and a 20 × /0.5NA objective is employed for the tissue samples

n mode two. The detailed description of the experimental setup can be

ound in Figs. S1 and S2. 

For living cell imaging samples, 4 × 10 4 Hela cells were seeded on

15 mm glass-bottom dish (NEST 801002) pre-treated with 20 μg/mL

uman fibronectin (Coring 356008) at 37 °C for 1 hour, treated in DMEM

GIBCO 10569010) supplemented with 10% FBS (GIBCO 10099-141C)

nd 100 U/mL Penicillin-Streptomycin (GIBCO 15140122) and returned

o CO2 incubator overnight. Next day, the culture medium was re-

laced with no phenol red DMEM (GIBCO) supplemented with 10% FBS

GIBCO) and 100 U/mL Penicillin-Streptomycin (GIBCO). The samples

ere placed at a 37 °C chamber supplemented with 5% CO2 for imaging.

. Result 

.1. Multiple types of samples imaging through different scattering media 

To verify the generalization and robustness of our method, we ex-

erimentally image cell samples through different scattering media, in-

luding thin tape, tissue section, and Petri dish. In addition, we test

issue samples to further demonstrate the superior property in terms

f different sample types. Notably, all the samples preserve the origi-

al structure without fluorescence labeling or staining. These biological

amples are illuminated by the laser through the diffuser, and on the

ther side, a camera captures the raw image mixed with the speckle

attern. The detailed setup is shown in Fig. S1. The captured raw im-

ges, whose speckle patterns have not been seen by the network, are

ed into our trained pixel to pixel network. Since the unstained cells are

ransparent, the captured raw images have poor contrast, which leads to

 difficult solution to the pixel-level prediction task in bioimaging. Nev-

rtheless, our network outputs the simultaneously recovered intensity

nd phase images with high quality, compared with the ground truth

btained under a non-scattering scenario. 

We evaluate the performance of our DespeckleNet over nasopharyn-

eal carcinoma cells (C666-1) and breast cancer cells (MDA-MB-231).

he first sample is imaged through thin tapes to keep consistent with

revious methods [61–63] . Furthermore, we replaced the thin tape with
6 
 breast cancer tissue section ( ∼4 μm thick) as a diffuser for the second

ample, which is more in line with real bioimaging. Representative ex-

mples of the speckle and prediction pairs are shown in Figs. 3 (a) and

(b). The speckle prevents our normal observation of the cells. We in-

ut the speckle into our network and the outputs are clear images of

he cell’s intensity and phase, which are very close to the ground truth.

e can see that the intensity images of cells without labeling have low

ontrast and it is difficult to recognize the boundary of cells against the

ackground. In contrast, the corresponding cell phase images have high

ontrast and we can observe the difference between the morphological

eatures of the cells. Our results show that our network performs well

ot only under the thin tape but also in the real biological tissue scatter-

ng media, providing a potential solution for unlabeled deep tissue laser

maging. Next, we test the performance of the DespeckleNet over living

ela cells through a Petri dish. Imaging of living cells often requires

he cells to be placed in a Petri dish, which is equivalent to a diffuser.

ifferent from other experimental configurations, the Petri dish consists

f the upper and lower surfaces, and the laser will go through the scat-

ering media twice in the whole optical path. The results are shown in

ig. 3 (c), where the outputs of the network are still satisfactory even

fter scattering twice. Our method enables high quality coherent illu-

ination imaging of unlabeled living cells.We also carry out the exper-

ment over breast cancer tissue with HER2 through a thin tape to prove

he robustness of our network with different types of samples. As shown

n Fig. 3 (d), the pathological tissue structure is more complicated and

he texture has more details, which inevitably imposes a great challenge

or high-quality reconstruction. On the other hand, the observation of

issue usually requires a wide FOV, so we capture the raw image with

048 × 2048 pixels (FOV ∼250 × 250 μm 

2 ). The conventional scatter-

ng imaging technique has a small imaging FOV due to the limitation

f the optical memory effect, and our method can break through the

imitation. In Fig. 3 (d), the outputs of the network remain high fidelity

ompared to the ground truth, even though the tissue speckle images are

lurred and coarse. To quantitively analyze the performance of our net-

ork, the intensity and phase profile along the corresponding line trace

re plotted in Figs. 3 (e) and 3(f), respectively. The red solid line (net-

ork output) almost coincides with the blue dashed one (ground truth).
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Fig. 5. Simulation results over different coherence scales. (a) The recovered results of different networks including Unet, IDiffNet, real-valued network, and De- 

speckleNet. The mean SSIM of (b) intensity and (c) phase based on different correlation lengths of speckles [ 66 ]. 
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here is no visual correlation between the green solid line (speckle) and

he blue dashed one, which means the intensity distribution of the in-

ut is different from the ground truth. Besides, we can draw a similar

onclusion in terms of phase profile in Fig. 3 (f). 

.2. The real-time intensity and phase imaging of living Hela cells 

Observing living cells is one of the most challenging and meaningful

xperiments in biological microscopic imaging, which just falls into the

ategory of the application of our method. One significant strength of

ur network is the ability to achieve high contrast and long-time obser-

ation of living cells without labeling, which preserves the vital move-

ent of the cells to the maximum extent. The other advantage of our

ethod is the real-time observation based on a single-shot speckle im-

ge. Here, we provide an example of real-time imaging of living Hela

ells. For the data collection, we used a Spinning Disk Confocal micro-

cope (Dragonfly 200, Andor) with a 40 × /1.25NA objective, and the

ample is illuminated by an extra laser (405nm, 50mW). The other ex-

erimental configuration is the same as those in Fig. 3 (c), as shown

n Fig. S1 . We take a video of the living Hela cell (see Visualization

), where the whole division process in the vital movement can be ob-
7 
erved. The duration of the video covers 800 minutes with an interval

f 20 minutes. 

We extract 9 sequential representative frames from Visualization 1

anging from 380 min to 540 min, as shown in Fig. 4 (a). The complete

ivision process of Hela cells is observed within the interval of 160 min-

tes. There are only two cells at 380 min, and the left cell begins to di-

ide at 420 min. The division of the left cell is finished while the right

ell remains unchanged at 540 min. The optical morphology of the cell

hanges during the process of division. In Fig. 4 (a), the morphology of

ela cells in phase information changes dramatically during the pro-

ess of division, and there is a clear difference between the two divided

aughter cells. Otherwise, the intensity images reconstructed by the net-

ork are ambiguous in terms of the morphological characteristics of the

ells. 

The temporal variations of both point A and point B in the phase

mage of Fig. 4 (a) are plotted in Fig. 4 (b). The red curve shows a de-

reasing trend within 400 min to 500 min, reflecting the phase change

f the region where the cell divides. Meanwhile, the blue curve exhibits

 stable trend with small fluctuations in phase along the temporal axis,

ndicating there is no dividing process at point B. In addition, Fig. 4 (c)

hows the intensity variations of points A + , B + in the corresponding re-

overed intensity image along the temporal axis. Although points A and
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Fig. 6. The performance of our networks with different training data distributions. We compare the performance of our networks trained on Hela data with different 

training data distributions (patches cropped from 6, 12, and 18 sets of speckle images) by LPIPS. Each circle from top to bottom represents the maximum, upper 

quarter, lower quarter, and the minimum of the intensity and phase LPIPS, respectively. The mean LPIPS is marked by black horizontal bars. The results show that 

the mean and variance of the LPIPS metrics become better as the diversity of data distribution increases. 
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n  
 + locate the same position in the phase image and intensity image,

he red solid curve in Fig. 4 (c) has no obvious upward or downward

endency during the division process. It reveals that it is difficult to dis-

inguish the cell division process by only using the recovered intensity

mage. Overall, it is more accurate to identify the dividing state of the

iving Hela cells employing phase information. In particular, there is an

bvious phase difference between A and B in Fig. 4 (b) after the left cells

nished the division process at 540 min. However, the intensity differ-

nce between the two points at this moment is slight due to the high

ransparency of the cells. This further reveals the benefits of simultane-

usly recovering both intensity and phase in our method. 

. Discussion 

In coherent bioimaging, the coherent transfer function is a complex-

alued function describing the response of intensity and phase. Consid-

ring this optical property during imaging, we design the DespeckleNet.

n contrast to the traditional real-valued network, our method utilizes

he complex convolution block. We first extract features using a series of

eneral convolution layers, then the features are further divided into two

roups for intensity and phase reconstruction separately. Our network

tacks 5 common convolution blocks and 4 complex convolution blocks

n the translate module, as shown in Fig. 2 . More details about the com-

lex convolution block can be seen in Method. To evaluate the perfor-

ance of our model, we compare it with the real-valued network model

nd two previous deep learning despeckle networks (UNet [23] and ID-

ffNet [24] ) on the simulated dataset with five scatter level images. The

eal-valued network has the same structure as the complex network by

eplacing the complex convolution block with the traditional real-valued

ne. Particularly, the parameter sizes of the complex and real-valued

etworks are the same. 

When a coherent signal consists of a large number of complex pha-

or components, the speckle would be generated by the summation of

ndependent phases. In particular, the phase and amplitude of the laser

istribute randomly after passing through a diffuser, and the superposi-

ion of these complex components results in the “random walk ” [ 64 ]. In

ddition, the high coherence of the laser causes coherent superposition

n a certain optical plane to form a speckle. The complex wavefront A

s given by 

 = 𝐴𝑒 𝑗𝜃 = 

1 √
𝑁 

∑𝑁 

𝑛 =1 
𝑎 𝑛 𝑒 

𝑗𝜑 𝑛 , (7)
8 
here A is the magnitude of the resultant phasor component summa-

ion, 𝜃 is the phase of the resultant phasor component summation, N

enotes the number of phasor components in the random walk, a n and

 n represent the n th magnitude and phase of the phasor vector, respec-

ively. 

To fairly compare the performance of networks, we use the open-

ource dataset [ 65 ] to generate paired simulated speckle images for

raining different despeckle networks. The corresponding code for

peckle simulation can refer to Ref 46 46 . The simulation results are

hown in Fig. 5 (a), where the DespeckleNet has better output compared

o other networks. In the result of the UNet and IDiffNet, the contour

f the recovery is not distinct, contaminated by the artifacts. The real-

alued network outperforms those two networks, especially in the inten-

ity recovery. However, there is still an obvious difference between the

hase output and the ground truth. On the contrary, the reconstruction

f the DespeckleNet is the closest to the ground truth in both intensity

nd phase, which demonstrates the superior advantages of our method

ver other competitive ones. It should be noted that the real-valued net-

ork is consistent with DespeckleNet in terms of the number of param-

ters. Quantitively, we provide the SSIM indices of these four networks,

s shown in Figs. 5 (b) and 5(c). Our DespeckleNet achieves the high-

st score and is robust even when the correlation length of speckles

ncreases. 

As shown in Fig. 6 , we evaluate the impact of training datasets with

ifferent distributions on network performance using the LPIPS met-

ic, which is closer to human perception in visual similarity judgments.

e acquire multiple sets of data under different experimental condi-

ions (including light intensity, light incidence angle, etc.) to construct

ur training datasets, and the number of sets reflects the data diversity

n training datasets. We constructed three training sets for comparison,

ropped from 6, 12, and 18 sets of speckle images, respectively. For the

ake of fairness, the total number of images is the same in different train-

ng datasets. Through quantitative analysis, the training dataset with

he largest number of sets has the lowest mean of LPIPS, which demon-

trates that the diversity of training sets is conducive to improving the

eneralization ability of the network. 

. Conclusion 

We achieved biological imaging through scattering, where simulta-

eous phase and intensity imaging through scattering media are real-
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zed via a deep despeckle complex neural network. By fully integrating

he GAN network and complex neural network, our network can ob-

ain high contrast and real-time observation of unlabeled living Hela

ells, which preserves the vital movement of the cells to the maximum

xtent. And our solution breaks the limitation of the memory effect to

chieve biological tissue imaging through scattering media with a wide

eld of view. Notably, our network achieved simultaneous prediction

f grayscale intensity and quantitative phase that can generalize to the

arious biological samples through unseen diffuser patterns. We believe

ur work provides a new method for imaging through scattering media

y using artificial intelligence technology. 
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